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Exact time-dependent solutions for a self-regulating gene
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The exact time-dependent solution for the stochastic equations governing the behavior of a binary self-
regulating gene is presented. Using the generating function technique to rephrase the master equations in terms
of partial differential equations, we show that the model is totally integrable and the analytical solutions are the
celebrated confluent Heun functions. Self-regulation plays a major role in the control of gene expression, and it
is remarkable that such a microscopic model is completely integrable in terms of well-known complex functions.
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Understanding the role of randomness that occurs inside
the cell and its apparent contrast with, for example, precise
formation of temporal and spatial patterns of gene expression
during biological processes such as embryogeneses is a central
open problem of the postgenomic era [1,2]. The significance
of statistical fluctuations in the cellular environment was
recognized by Delbruck since the infancy of molecular
biology [3]. The fluctuations are caused by the presence of
a frequently small number of reacting molecules in a cell.
The mechanism of gene expression, which involves a web of
chemical interactions, is an example where stochasticity plays
an important role, as recently verified in experiments using
fluorescent protein techniques [4,5].

Simulations of the gene regulation process in E. coli,
λ phage, and other simple systems have been performed
to explain the experimental data [6]. Also, the description
of the concentration dynamics of gene products has been
explored by using nonlinear differential equations, followed
by the introduction of noise by the Langevin mechanism
[7,8]. Although the mentioned efforts have been successfully
employed in the phenomenological control of the experiments,
the understanding of the biological and biophysical meaning
of noise in gene networks requires, as usual in science
and particularly in physics, a soluble model. Therefore, we
adopt here a different strategy, searching for exactly soluble
models to be used as building blocks to decompose complex
networks. Specifically, we target microscopic soluble models
to understand the basic stochastic properties of simple gene
expression mechanisms [9–15]. The full knowledge of the
stochastic properties encoded in probability distributions,
instead of mean values and noise, is a requirement since
several systems show many stable configurations that cannot
be explained by the first moments [16].

Recently, a binary stochastic model for gene expression
was proposed [17], inspired by the spin-boson models used in
many body theory [9,10,12]. Exact solutions for the stationary
regime of the single gene spin-boson model were already
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obtained [17,18]. The underlying symmetries responsible for
the integrability of this model were identified [19,20], and
several applications of the model have been discussed in the
literature [21,22]. In this Brief Report we solve completely the
model exhibiting analytical solutions for the time-dependent
stochastic process in terms of Heun functions [23–26].

We assume that the transcription and translation are
combined, resulting in an effective process that is appropri-
ate for prokaryotic cells, where translation follows, almost
simultaneously, transcription. We focus our attention on the
self-regulation process, not only because of the importance of
this phenomenon [5] but also because it is a challenge due to
its mathematic complexity.

Our stochastic variable n is the number of free proteins
expressed by a two state gene in the cell. The probability to
find the operator site free and the gene in full operation is
αn(t), while βn(t) is the probability to find the gene inactivated
or in a basal level of expression. The model is based on
the coupling of two Markov processes where a parameter
ρ describes the protein degradation and k and χk (χ < 1)
denote the production rate in the activated and repressed
modes, respectively. The master equations are coupled by two
parameters: h describes the binding of the regulatory protein
in the operator site and f is the release. The equations for the
probabilities are

dαn

dt
= k[αn−1 − αn] + ρ[(n + 1)αn+1 − nαn]

− nhαn + fβn, (1)

dβn

dt
= kχ [βn−1 − βn] + ρ[(n + 1)βn+1 − nβn]

+ nhαn − fβn. (2)

Self-regulation is characterized by the linear dependence
of the binding rate on n. Large values of n enhance the
binding rate, while the unbinding is independent of the protein
number.

Instead of equations involving time derivatives and
differences as in the master equations, we rephrase the
problem in terms of partial equations by introducing the func-
tions α(z,t) = ∑∞

n=0 αn(t)zn and β(z,t) = ∑∞
n=0 βn(t)zn. The
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corresponding partial differential equations coupling α(z,t)
and β(z,t) are

∂α

∂t
= (z − 1)

[
kα − ρ

∂α

∂z

]
− hz

∂α

∂z
+ fβ, (3)

∂β

∂t
= (z − 1)

[
χkβ − ρ

∂β

∂z

]
+ hz

∂α

∂z
− fβ, (4)

and looking for analytical solutions, we ensure a well-behaved
probability distribution.

In order to understand the topology of this system of
equations it is useful to consider the variable z in the complex
plane. The coefficient of the derivative with respect to z in
Eq. (3), −ρ(z − 1) − hz, vanishes at z = ρ/(ρ + h) and is
a singular point of the system. A second singularity at z = 1
comes from Eq. (4), and at infinity we have the third singularity.
One might expect the solutions to be expressed in terms of
hypergeometric functions; however, the irregularity of the
singular point at infinity can only be taken into account by
the use of the Heun confluent functions.

Instead of the pair α(z,t) and β(z,t) we introduce the total
probability φ(z,t) = α(z,t) + β(z,t), which has a straight-
forward biological meaning. The mean value of proteins
and also the fluctuations, which are commonly measured in
experiments, are directly obtained by taking derivatives of
φ(z,t) with respect to z. The new system of equations is

∂α

∂t
= (z − 1)

[
kα − ρ

∂α

∂z

]
− hz

∂α

∂z
+ f (φ − α), (5)

∂φ

∂t
= (z − 1)

[
kα − χkα + χkφ − ρ

∂φ

∂z

]
, (6)

where Eq. (6) is obtained by summing Eqs. (3) and (4),
introducing φ(z,t), and eliminating β(z,t).

This system of first order partial equations [Eqs. (5)
and (6)] generates a second order equation for φ(z,t) by
solving Eq. (6) for α(z,t) and replacing it in Eq. (5), and
the resulting equation is shown as Eq. (1) of the supplemental
material [27]. The equation is not separable in the variables
z and t ; however, new variables can be found to rewrite the
equations in a canonical form, namely, ν = z(ρ+h)−ρ

h
and μ =

z(ρ+h)−ρ

h
exp [−(ρ + h)t]. The motivation for the introduction

of the variable ν is to bring the singular points at z = ρ/(ρ + h)
and z = 1 to ν = 0 and ν = 1, respectively. The variable μ

was an ansatz aiming at separability in the new variables.
Asymptotically, t → ∞, the variable μ vanishes, and the
partial equation is reduced to the Kummer equation, as we
have discussed in [17]. At the initial state, t = 0, the variables
coincide, ν = μ. The new form of the partial equation in terms
of these variables is[

∂2

∂ν2
+ μP

∂2

∂ν∂μ
+ μQ

∂

∂μ
+ R

∂

∂ν
+ S

]
φ(μ,ν) = 0.

(7)

The coefficients of this equation have a simple linear depen-
dence on μ, as we can see inspecting by Eq. (7), and the
coefficients P , Q, R, and S are rational functions depending
only on the variable ν and have poles on the singular points;
for details, see [27]. The irregularity at infinity can be seen
in the usual way by making the transformation ν → 1/ν.
The appearance of μ always together with the derivatives

with respect to μ in the coefficients of Eq. (7) guarantees
separability, making possible a solution in the form φ(μ,ν) =
μλHλ(ν), where λ is the separation constant. The equation for
the function Hλ(ν) can be reduced to the celebrated confluent
Heun equation,[

d2

dν2
+ (R + λP )

d

dν
+ (S + λQ)

]
Hλ(ν) = 0. (8)

This equation has recently been exhaustively studied, and solu-
tions of several physical phenomena, from general relativity to
condensed matter, can be expressed by these functions [24,26].
It can be easily manipulated by using symbolic computational
software packages such as MAPLE. The general solution is
a product of a term, (ν − 1) exp

[
kh(ν − 1)/(ρ + h)2

]
, and a

superposition of the two families of the Heun confluent HC

functions:

C1
j e−jρtHC(c,θ1,1 − j,δ1,η1,ν), (9)

C2
j νj+1 e−(ρ+h)(j+b)tHC(c,j + 1,σ 2,δ2,η2,ν), (10)

where j is an integer running from zero to infinity. The other
parameters of the Heun functions are related to the model
parameters and are shown in the supplemental material [27].
The coefficients C1

j and C2
j depend on the initial conditions.

Once the generating functions are calculated, the probabilities
αn(t) and φn(t) are recovered by taking derivatives and
evaluating them at z = 0.

The biological picture emerging from the analysis of the
solutions shows that the protein synthesis approaches equilib-
rium by combining two processes with different time scales.
The distribution for the transcription-translation probability
is composed by the linear combination of Heun states given
in Eqs. (9) and (10). The first set of solutions characterizes
the protein deactivation as a transcription factor and depends
on the parameter ρ describing the death rate in the master
equation. The second is a function of the gene switching
parameters h and f , which control the regulation of the
gene. In the beginning, the probability distribution is a linear
combination of Heun states weighted by the constants C

j

1

and C
j

2 . The information about the initial states is lost during
the probability dynamics following the hierarchy of decaying
times. If the switching time 1/Ts = b(ρ + h) is smaller than
the protein deactivation time (fast switching gene), 1/ρ, the
second family of states decays faster than the first and the
equilibrium is approached after the controlling components
are already stable. Here, the probability distribution shows
only one Poissonian-like peak. On the other hand, when the
switching time is large, the final state can show two-peaked
distributions (bimodality). This is, of course, in agreement with
the symmetry analysis performed in Ref. [19] and in light of
the adiabatic analysis done formerly [17]. We emphasize that
our model gives an effective phenomenological description
of the combined transcription-translation processes, and its
parameters are selected to reflect globally the results of the
chemical reactions responsible for the deactivation of the
regulatory protein and the gene state control. The first situation
will correspond to systems in which the regulation of the
control site is simple and the protein deactivation depends
primarily on the chemical degradation of the transcription
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FIG. 1. (Color online) We display the time evolution of the total
probability, φn(t) = αn(t) + βn(t), and of the on and off modes, as
indicated. (a)–(c) Parameters values of k = 22, f = 0.05, h = 0.005,
ρ = 1, and χ = 1/5; (d) and (e) k = 44, f = 0.8, h = 3, ρ = 1, and
χ = 1/5.

factor. However, one should keep in mind the use of the model
to understand effectively more complex regulatory machinery.

In order to illustrate our results we have selected two set of
values for the parameters and initial state to be propagated.
In Figs. 1(a) and 1(d) we show the starting distributions
by plotting the partial and total probabilities versus n. The
families of constants C1

j and C2
j have been adjusted to produce

a Poisson-like initial state for the total probability. The time is
scaled by fixing the protein degradation rate as 1. Figure 1(a)
shows a state of low repression probability, i.e., the gene is fully
active, while the opposite is shown in Fig. 1(d). Figure 1(b)
corresponds to a transient configuration in which repression
has increased, forming a peak around n = 5, and the mode
of full activity of the gene has been damped, producing
another peak around n = 20. The stationary state is show
in Fig. 1(c). The pronounced peak at n = 5 means that the
proteins are also expressed in the repressed mode. In Fig. 1(c)
we see that the strong initial peak has decreased by a third
and has displaced slightly to the right. The life time of the
nonequilibrium regime is dominated by the gene switching
decay rate b(ρ + h) ∼ 0.16. The probability for the gene to
be repressed increases with time and, when the system is at
steady state, is of the same order as the probability for the gene
to be active.

The transient configuration in Fig. 1(e) shows that the
maximum probability has displaced from n = 2 to n = 8. The
steady state configuration is still a one-peaked distribution
centered around n = 10, as shown in Fig. 1(f). Inspection is
enough to verify that βn ≈ φn and that the total probability
of the gene to be in the active state, pα = ∑∞

n=0 αn, is almost
zero, indicating that the gene remains in the repressed state the

majority of time, even in the equilibrium regime. The protein
deactivation dominates the nonequilibrium regime since the
b(ρ + h) = 33.8 contribution rapidly falls off.

We discuss the meaning of the switching constant b by
comparing the two steady state probability distributions that
we show. In Figs. 1(a)–1(c), we have b ≈ 0.16, which indicates
that the gene switching is slower than the protein degradation.
In terms of average life times, it means that the gene stands in
a state long enough that a protein is synthesized and loses its
functionality before a transition to the other gene state. This
explains the existence of two-peaked probability distributions
for low values of b, independently of the relation between f

and h. In Figs. 1(d) and 1(e) we have selected the switching
constant b = 8.45, indicating that the gene switching performs
several transitions between its states during the mean life time
of a protein.

Two points deserve a brief comment: bimodality and posi-
tive regulation. The master equations for the spin-boson model
are equivalent to a linear partial differential equation for the
time-dependent generating function and consequently present
a single equilibrium regime reached by all initial conditions.
This is in contrast to dynamical systems of nonlinear differen-
tial equations, which can present more than one equilibrium
state, with each one reached from a different set of initial condi-
tions. The appearance of single- or double-peaked distributions
cannot be confused with the bistability of a dynamical system.
The binary spin-boson model allows distributions centered
around one or two points and also table-shaped unlocalized
probabilities, depending on the region of the parameter space
chosen. This welcome freedom may be used depending on the
phenomena selected for the investigation. In this Brief Report
we consider negative self-regulation by allowing a linear
dependence on n in the binding rate and χ < 1, enforcing that
the α mode is a copious transcription state. Positive regulation
can be obtained by changing n dependence to the unbinding
constant or considering χ > 1 in the solutions presented here.
Those are minor changes and not a severe limitation of the
model.

Bimodality is caused by slow transitions between two
expression states and not by the class of regulation that the
gene is submitted to (positive or negative, auto or external).
Thus, a gene operating in N states (or N different rates of
synthesis) and with switching constant and very slow would
express proteins in terms of N -modal probability distributions.
Since bimodality has been attributed to positive feedback [28],
mainly based on experimental data, it would be interesting
to verify the bimodal behavior in simple wild or synthetic
negatively regulated systems. In the case of the nonexistence
of binary behavior in wild negative self-regulating genes, it
is a task to understand, in an evolutionary framework, how
and why nature evolved such that only positive feedback is
present.

In summary, we have shown here and in [17] that the binary
stochastic model for gene regulation is completely integrable,
both in the stationary state and in the dynamical regime. The
integrability, as usual, is a consequence of symmetries, as we
have shown in [19]. We expect such a soluble time-dependent
model for the expression of a single gene can be used as a
building block for more complex systems, taking advantage
of the analytical solution in terms of well-known functions in

062902-3



BRIEF REPORTS PHYSICAL REVIEW E 83, 062902 (2011)

closed forms and easily manipulating the available calculation
techniques or mathematical machinery.

The model presented here has a major limitation, which is
the nature of the Markov process selected at the beginning,
which couples the birth and death stochastic processes by
the linear coupling of the binding probabilities, although
dimer-like coupling is feasible [29,30]. In principle, we
can expect that the solutions obtained here may be used
as an approximating procedure. A second limitation is the

existence of only two states corresponding to whether an
operator is occupied or not. Even the simple lac operon
exhibits more than two regulation levels. The control of the
process of the Drosophila segmentation is made by many
different enhancers and transcription factors. Of course, we
can approximate the phenomena by means of major classes of
“on”and “off”; however, a more realistic approach requires the
inclusion of higher spins, which are under investigation in our
group.
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