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Performance Evaluation

Issues: training, testing

Confusion matrix

Performance indicators

Holdout, cross-validation, bootstrap

Predicting performance: confidence limits

Comparing classification algorithms: t-test, non-parametric test

Parameter tuning



Performance Evaluation

e How good is the classifier?
e Natural performance measure for classification problems: error rate

e Success: instance’s class is predicted correctly
e Error: instance’s class is predicted incorrectly Error rate:
proportion of errors made over the whole set of instances

e Resubstitution error: error rate obtained from training data
o Extremely optimistic — particularly if the classifier overfits



Training & Test Sets

Training set. instances used to train (induce) the classifier

Test set: independent instances that have played no part in formation
of classifier

e Assumption: both training data and test data are representative
samples of the underlying problem

Generally, the larger the training data the better the classifier
The larger the test data the more accurate the error estimate

Holdout procedure: method of splitting original data into training and
test set

e Dilemma: ideally both training set and test set should be large!



Predicting Performance

e Assume the estimated error rate is 25%. How close is this to the true
error rate?

e Depends on the amount of test data
e Prediction is just like tossing a (biased!) coin
e “Head” is a “success”, “tail” is an “error”

e In statistics, a succession of independent events like this is called a
Bernoulli process

o Statistical theory provides us with confidence intervals for the true
underlying proportion



Confidence Intervals for Success Rate

e We can say: the true success rate (denote by p) lies within a certain
specified interval with a certain specified confidence

e Example: S =750 successes in N = 1000 trials

o Estimated success rate: 75%
e How close is this to true success rate p?

e Answer: with 80% confidence p in [73.2,76.7]
e Another example: S=75and N = 100

o Estimated success rate: 75%
e With 80% confidence p in [69.1,80.1]



Confidence Intervals for Success Rate

Mean and variance for a Bernoulli trial:
e u=p, V=p(1-p)
Expected success rate: sample mean p = S/N

Central Limit Theorem: For large enough N, p follows a Normal
Distribution with mean x = p and variance V/N = p(1 — p)/N

A c% probability interval [-z < X < z] for a random variable with mean
0 is given by:
Prl-z< X <2z]=c%

For a symmetric distribution:
c = Prl-z<X<z]=1-2Pr[X > Z]

= Pr[Xzz]:1_C




Confidence Intervals for Success Rate —
Bernoulli Process

e Confidence limits for a variable X with standard normal distribution
(mean 0 and variance 1):

PrlX = z] z

/\ 0.1% 3.09
0.5% 2.58

1% 2.33

5% 1.65

10% 1.28

20% 0.84

-1 0 1 1.65 40% 0.25

e Thus:
Pr[—1.65 < X < +1.65] = 90%

¢ To use this we have to standardize p to have 0 mean and unit variance



Confidence Intervals — Standard Normal
Distribution

e Transformed value for p:
p—p

p(1—p)/N
(i.e. subtract the mean and divide by the standard deviation)

e Resulting equation:

pr[_zgp—f’q]:c

Vol —p)IN -

e Transforming inequalities in equalities and solving for p:

p P2 72 72
pe NN+4Ne/<”N)




Confidence Intervals — Standard Normal
Distribution

e Examples

e p=75%,N=1000,c = 80% (so that z = 1.28):
p € [0.732,0.767]

e p=75%,N=100,c=80% (so that z = 1.28):
p €[0.691,0.801]

o p=75%,N=10,c =80% (so that z = 1.28):
p € [0.549,0.881] !!

e Normal approximation for Bernoulli processes is only valid for large N
(i.,e. N> 100)



Holdout estimation

What to do if the amount of data is limited?

The holdout method reserves a certain amount for testing and uses the
remainder for training

o Usually: one third for testing, the rest for training
Problem: the samples might not be representative

e Example: class might be missing in the test data
Advanced version uses stratification

e Ensures that each class is represented with approximately equal
proportions in both subsets



Repeated holdout method

Holdout estimate can be made more reliable by repeating the process
with different subsamples

¢ In each iteration, a certain proportion is randomly selected for
training (possibly with stratificiation)

e The error rates on the different iterations are averaged to yield an
overall error rate

This is called the repeated holdout method
Still not optimum: the different test sets overlap
e Can we prevent overlapping?
Problem: the samples might not be representative
o Example: class might be missing in the test data
Advanced version uses stratification

o Ensures that each class is represented with approximately equal
proportions in both subsets



Cross-validation

Cross-validation avoids overlapping test sets

o First step: split data into k subsets of equal size
e Second step: use each subset in turn for testing, the remainder
for training

Called k-fold cross-validation

Subsets may be stratified

The error estimates are averaged to yield an overall error estimate
Standard method for evaluation: stratified ten-fold cross-validation
Best variant: Repeated stratified cross-validation

o E.g. ten-fold cross-validation is repeated ten times and results are
averaged (reduces the variance)



Cross-validation — Diagram
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Leave-One-Out Cross-validation

e [eave-One-Out. particular form of cross-validation

e Set number of folds to number of training instances
¢ |l.e., for n training instances, build classifier n times

e Pros:

o Makes best use of the data for training
¢ Involves no random subsampling

e Cons:

o Very computationally expensive
e Cannot be stratified
e There is only one instance in each test set!
o Extreme (artificial) illustration: random dataset with the same
number of instances of each of two classes
e Best inducer predicts majority class
e 50% accuracy on fresh data
o Leave-One-Out yield an estimated error of 100%!



Confusion Matrix

e Applying the classifier on a test set yields a confusion matrix, a
bi-dimensional contingency table formed by the absolute frequencies of
real and predicted classes of test instances

e For binary classification (two classes):

Classe Predita

Classe Real

VP FN POS
Verdadeiro Positivo Falso Negativo Positivo Total (Real)
FP VN NEG

Falso Positivo

Verdadeiro Negativo

MNegativo Total (Real)

PP

Positivo Total (Predita)

PN
Megativo Total (Predito)




Confusion Matrix

Classe Predita

Classe Real

VP FN POS
Verdadeiro Positivo Falso Negativo Positivo Total (Real)
FP VN NEG

Falso Positivo

Verdadeiro Negativo

Negativo Total (Real)

PP
Positivo Total (Predito)

PN
MNegativo Total (Predito)

TP (True Positives), TN (True Negatives): instances classified

correctly

FN (False Negatives), FP (False Positives): misclassified

instances

POS: positive instances: POS = TP + FN ;
NEG: negative instances NEG = FP + TN;
PP (Prediced Positive): PP = TP + FP

PN (Prediced Negative): PN = TN + FN.



Performance Measures

e Total error rate, total accuracy rate: The most used measures
E, = (FN + FP)/(NEG + POS); Acc = (1 — E/)

e True Positive Rate (also called sensitivity or recall): TP, = TP/POS
True Negative Rate (also called specificity): TN, = TN/NEG
False Negative Rate: FN, = FN/POS
False Positive Rate: FP, = FP/NEG

e Precision rate: Proportion of positive class instances among those
predicted as positive.

Prec, = TP/ PP

e Good measure for high-cost misclassification of negative cases:
e In stock markets, if a trader decides to start a buy & hold operation,
its success rate must be high
o Ineffective for very low predicted positive rates

e Usually, low PP = high FN
e ltis not defined if PP =0



Performance Measures — Example

Classe Predita

VP=6 FN=4 POS=10
Classe Real

FP=1 VN =89 NEG =90

PP=7 PN =93

TP, = 6/10 = 60%; TN, = 89/90 = 98.9%
FN, = 4/10 = 40%; FP, =01/90 =1.1%

Total error rate: ET, = (4+1)/(10 +90) = 5%
Precision rate: Prec, = 6/7 = 85.7%

Excellent for predicting negative class; very bad for predicting positive
class



ROC Curve

e ROC: Receiver Operating Characteristic

e Used in signal detection to show tradeoff between hit rate and
false alarm rate over noisy channel
http://psych.hanover.edu/JavaTest/SDT/index.html

o Common use for calibrating medical diagnostic tests
http://gim.unmc.edu/dxtests/Default.htm

e ROC curve is obtained by plotting the FP, (or 1—specificity) on
horizontal axis and TP, (sensitivity) on vertical axis

e Suitable for

e tuning parameters of algorithms for the adequate trade-off
between sensitivity and specificity
e comparing algorithms performances



100%

80%

TP,
60%
sensitivity

40%

20%

ROC Curve

Jagged curve: one set of test data
Smooth curve: cross-validation
Diagonal line: random guess

20% 40% 60% 80%
FP; = 1- specificity

100%



ROC Curve

e Optimum point: Perfect classification
e 100% true positives, 0% false positives
e The closer the point (FP,, TP;) to (0%, 100%), the better the algorithm

e A completely random guess (with variable probability of positive
assignment) would give a point along a diagonal line (line of
no-discrimination)

Source of image in next slide:

"ROC space-2" by ROC_space.png: Indonderivative work:

Kai walz (talk) - ROC_space.png.

Licensed under CC BY-SA 3.0 via Wikimedia Commons

https://commons.wikimedia.org/wiki/File:ROC_space-2.png#/media/
File:ROC_space-2.png



TPR or sensitivity

ROC - Examples
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ROC - historical note

e ROC analysis is part of a field called "Signal Dectection
Theory"developed during World War Il for the analysis of radar images.

o Radar operators had to decide whether a blip on the screen
represented an enemy target, a friendly ship, or just noise.

¢ Signal detection theory measures the ability of radar receiver
operators to make these important distinctions.

e Their ability to do so was called the Receiver Operating
Characteristics.

o It was not until the 1970’s that signal detection theory was
recognized as useful for interpreting medical test results.



Area under the ROC Curve

e Area under the curve (AUC): one of ROC summary statistics

e Corresponds to the integral

/ TP (H)FP ()dt

where t is a (continuous) sensitivity-related parameter

e Evaluation:

e AUC = 1: perfect classifier
e AUC=0.5: worthless classifier (random guess)
¢ In Medicine: criterion for classifying the accuracy of a diagnostic

test:

e .90 — 1 = excellent (A)

.80 — .90 = good (B)
.70 — .80 = fair (C)
.60 — .70 = poor (D)
.50 — .60 = fail (F)



Area under the ROC Curve

e AUC measures discrimination, that is, the ability of a classifier to
correctly classify instances of positive and negative classes

e Probability that a classifier will rank a randomly chosen positive
instance higher than a randomly chosen negative one (assuming
‘positive’ ranks higher than ’negative’)

e Computation:

e For a single test point (corresponding to a unique test sample and
unique t value), the AUC may be estimated by the mean and
sensitivity and specificity:

AUC = (TP, + TN,)/2

(Figure in the next slide)
e Given several test points, build trapeziods under the curve as an
approximation of area (extension of the single point case above)



Area under the ROC Curve — Estimation

100%
AUC =[TPr+ (1-FPr)] /2
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Unbalanced Datasets: Accuracy vs AUC

e Unbalanced datasets:
¢ High prevalence of one class

¢ In such cases, Accuracy measure may be (optimistically) misleading

e Taking the previous example:

Classe Predita

VP =6 FN=4 POS=10
Classe Real

FP=1 VN =89 NEG =90

PP=7 PN =93

o TP, = 60%; TN, =98.9%; FN, = 40%; FP, =1.1%

e Acc = 95%

High accuracy rate, but... an error rate of 40% in positive class!



Unbalanced Datasets: Accuracy vs AUC

e Taking the previous example:

e TP, =0.6; TN, =0.989; FN, =0.4; FP, =0.011
e Acc = 95%
High accuracy rate, but... an error rate of 40% in positive class!
e If positive class corresponded to a disease, 40% of ill patients
would be classified as healthy!

e AUC estimate:
AUC = (TP, + TN;)/2 = (0.6 + 0.989)/2 = 0.795

According to AUC reference table, just fairl



Comparing Learning Algorithms

Frequent question: which of two learning schemes performs better?
Note: this is domain dependent!
Obvious way: compare 10-fold CV estimates

Generally sufficient in applications (we don’t loose if the chosen
method is not truly better)

However, what about machine learning research?

¢ Need to show convincingly that a particular method works better
A possible answer for this question is to use statistical techniques

¢ Confidence intervals and significance tests



Comparing Algorithms — Confidence Intervals

e Notation:

¢ 1) classification algorithm

e i, (®): a classifier inducted by algorithm ¢ using training set L

e ., (Lss): classes predicted by ., (e) for instances of set L;s

* Mcyy.,(c): the confusion matrix yielded by true and predicted
classes of Ly

e h (M[:tsﬂpﬁt,(ﬁts)): a performance measure (accuracy, total error,

AUC, etc) yielded from confusion matrix Mc,, 4. ()

e Given two distinct algorithms ¢ and ¢, the random variable of interest
is the difference between the measured performances:

6=h (Mgts,q/w”(ﬁ,s)) —h (Mﬂt57@£t,(£ts))

Y(Lis, Lor) € P(X x {1...K})2.



Comparing Algorithms — Confidence Intervals

We denote by 115 = Ep(xx(1...k3)2(9)

¢ i.e. the mean of performance differences between 4 and 5 over
all possible pairs of training and sample tests

If algorithms ) and ¢ perform equally, then ps = 0.
s is unknown = we may obtain a confidence interval for it.
One (1 — a)% confidence interval for ps:

e Interval [a, b] yielded from a sample that should include the true
value of ps, with probability 1 — «,
o We say that 6 belongs to interval [a, b] with confidence 1 — «.

We shall see a method for obtaining the confidence interval via Cross
Validation



Comparing Algorithms — Cross Validation
Input: £: Original dataset V: Number of CV folds

Partition £ in V disjoinct subsets L1, Lo, ..., Ly of the same size

for v from 1 to V do

Take L, as test set and £ = £ — £, as training set

Build classifiers v.¢(e) and ¢ ¢ (o) using L}

Apply both classifiers on test set £, yieldind the confusion matrices
Me,ypo(cy @and Mg, o (c,)

Compute the performance difference:

éy=nh (Mﬁv,¢£5(£v)) —h (Mﬁv»s%g(ﬁv))

end
Return the mean of 61, d2, ..., dy and its corresponding standard error:

— 1 % 1 % —
-3 _ S (5 -y
0= Y2y S = \/V(V— 1) (9= 0)




Comparing Algorithms — Confidence Intervals

e If Vislarge (V > 100): approximation by standard sormal distribution
e If V is small: approximation by Student t distribution
e Confidence interval for 15 using Student t distribution:

us € [a,b] = Eizsg}

where z represents the quantile 1 — a;/2 of Student t distribution with
V — 1 degrees of freedom.



Comparing Algorithms — Confidence Intervals

e To test the hipothesys Hp : us = 0 (i.e. algorithms ¢ and ¢ perform
equally well):

o Build the confidence interval [a, b]

e if 0 € [a, b]: we don’t reject reject Hy
= Differences of performances are not significant ona (1 — @)%
confidence level
= Algorithms are considered as equivalent in performance

e if0 ¢ [a, b]: we reject Hy
= Differences of performances are significant on a (1 — a)%
confidence level
= The algorithm with larger CV average performance is
considered better

e Usual values for the confidence level:
e 0.90,0.95€0.99 (o« = 0.1,0.05 € 0.01, respectively)
e The higher the confidence level:

o the larger (less precise) the interval
¢ the higher the chance of accepting Hp



