
More Testable Service Compositions by Test
Metadata

Marcelo Medeiros Eler
ICMC/USP

Sao Carlos/SP - Brazil
Email: mareler@icmc.usp.br

Antonia Bertolino
ISTI/CNR
Pisa - Italy

Email: antonia.bertolino@isti.cnr.it

Paulo Cesar Masiero
ICMC/USP

Sao Carlos/SP - Brazil
Email: masiero@icmc.usp.br

Abstract—In previous work we proposed testable services as a
solution to provide third-party testers with structural coverage
information after a test session, yet without revealing their
internal details. However, service testers, e.g., integrators that
use testable services into their compositions, do not have enough
information to improve their test set when they get a low coverage
measure because they do not know which test requirements have
not been covered. This paper proposes an approach in which
testable services are provided along with test metadata that will
help their testers to get a higher coverage. We show the approach
on a case study of a real system that uses orchestrations and
testable services.

I. INTRODUCTION

Service Oriented Architecture (SOA) promises the rapid,
low-cost development of loosely coupled and easily integrated
applications even in heterogeneous environments [1]. Services
can come in two flavors: single or composed. A composed
service (or composition) is a service that delivers its function-
ality through the interaction of more services. Depending on
the scheme of interaction, compositions form orchestrations
or choreographies [2].

Everyone would agree that testing third party services before
integrating them in an orchestration or choreography is very
important. Unfortunately, it is not an easy task. Testing SOA
applications is indeed challenging due to the complex nature
of services and their characteristics of high dynamism and
loose coupling. However, test cases should be chosen with
accuracy [3], [4], as testing of services is expensive and costs
may be associated with their execution. Low testability of
compositions [5] makes things worse.

Testability has been defined as “the degree to which a
system or component facilitates the establishment of test
criteria and the performance of tests to determine whether
those criteria have been met” [6]. It is also an important
quality indicator since its measurement leads to the prospect
of facilitating and improving a service test process [7], [8].

Third-party services generally yield a low testability because
they are provided as black boxes, only exposing a specified
interface to their clients. This hampers the establishment and
the tracing of testing criteria other than those based on the
specification or based on the interface [7]. Such characteristic
is a common issue of services and components when it comes
to testing [9].

To overcome this issue, two similar approaches had been
independently proposed in [10] and [11] to improve the testa-
bility of SOA applications by allowing for white-box testing
of third-party services, but without revealing their internal
details, thus preserving the encapsulation principle of SOA.
The process and the infrastructure by which this coverage
information is obtained varied in the two approaches (we refer
to [10] and [11] for the details). The basic idea is however
the same: they suggested that the services are created with
the capability to provide their clients with structural coverage
information. Services offering such capability have been called
by both approaches testable services.

Developers of orchestrations or choreographies (or, integra-
tors) can thus test a third party testable service as a single
service before integrating it into their application, or can test
the composition by invoking the testable services in the context
of integration testing. In the former situation the integrator
launches test cases to test the testable service through its
interface, and in the latter situation the integrator launches
test cases to test the orchestration or the choreography that
uses the testable service. In both cases the integrator can get a
structural coverage analysis based on the test session carried
out.

This coverage measure provides a feedback about the thor-
oughness of the executed tests, but, on the negative side,
it provides no clue of how testing could be improved. The
integrator does not get enough information to decide whether
the coverage achieved is good or bad, nor to understand how
the test set should be augmented to increase the coverage.
Through the testable service approach the integrator would
know that, for example, 40% of the nodes of the service have
not yet been covered, but the integrator would not know which
are these nodes, because the source code or other models, such
as the control flow, are not made available.

Authors of the two testable services approaches join here
their effort to find a common solution to this limitation
shared by earlier approaches. The purpose of this paper is to
enhance both approaches [10], [11] by proposing a solution
to make testable services even more testable. We present a test
metadata model for testable services, which is inspired by the
concepts of built-in testing [9], [12] and metadata [13]. The
approach is called MTxTM (for More Testable service by Test

Proceedings of The 6th IEEE International Symposium on Service Oriented System Engineering (SOSE 2011)

978-1-4673-0412-2/11/$26.00 ©2011 IEEE 204

Hong
Stamp

Metadata).
This paper is organized as follows. Section II presents a

motivating scenario. Section III provides some background no-
tions. Section IV depicts the built-in test metadata approach we
propose in this paper. Section V shows a case study. Related
work is surveyed in Section VI and concluding remarks are
given in Section VII.

II. MOTIVATING SCENARIO

In this section we motivate our effort towards more testable
service compositions. We consider a test scenario of a real
application that is an open source E-Commerce framework,
called Broad Leaf Commerce1. This framework is composed
by several services, each providing a specific feature such
as customer and catalog management, shopping cart, order,
shipping and payment processes. The developers provide a
complete instantiation of the framework and its source code,
including the test cases for almost all services.

For the purpose of our investigation, we selected a com-
posed service called RegisterService, which is an or-
chestration using several services, among which a service
called CustomerService. RegisterService has 2
public operations, while CustomerService has 7 pub-
lic operations. Test sets for both RegisterService and
CustomerService are available, called ts-Register
and ts-Customer, respectively. Figure 1 shows an illus-
tration of this scenario.

RegisterService

CustomerService

Integrator

Developer

test(TS-Register)

test(TS-Customer)

Fig. 1. Motivating scenario

According to the testable service approaches, we trans-
formed the CustomerService into a testable service
(testable services are introduced in the next section; for the
purpose of this example, take it to mean that we instru-
mented it, pretending to be the CustomerService devel-
opers) and got the coverage reached in two situations. In
the first situation we execute TS-Customer, which tests
CustomerService in isolation. Table I shows the structural
coverage achieved in this situation for the whole service and
each operation. The coverage for the whole service is given
by the formula TRcov/TR, where TR is the sum of all test
requirements of the service (for all operations) and TRcov is
the sum of the test requirements that were covered. We can

1http://www.broadleafcommerce.org

TABLE I
STRUCTURAL COVERAGE REACHED WHEN TESTING CUSTOMERSERVICE

AS A SINGLE SERVICE

As a single service
Service all-nodes all-edges all-uses
CustomerService 97% 93% 87%
By operation all-nodes all-edges all-uses
createFromId 90% 92% 72%
registerCustomer 100% 100% 100%
saveCustomer 90% 86% 84%
readById 100% 100% 100%
readByUsername 100% 100% 100%
readByEmail 100% 100% 100%
changePassword 100% 100% 80%

TABLE II
STRUCTURAL COVERAGE REACHED WHEN TESTING CUSTOMERSERVICE

IN THE CONTEXT OF THE ORCHESTRATION REGISTERSERVICE

Orchestration context
Service all-nodes all-edges all-uses
CustomerService 50% 34% 34%
By operation all-nodes all-edges all-uses
createFromId 54% 35% 25%
registerCustomer 100% 66% 65%
saveCustomer 54% 33% 33%
readById 0% 0% 0%
readByUsername 100% 100% 100%
readByEmail 0% 0% 0%
changePassword 0% 0% 0%

notice that the coverage is quite high, since the test cases were
created by the developers that have access to the source code
of the service.

In the second situation, we executed the test
set called TS-Register to test the orchestration
RegisterService, which also invokes the
CustomerService operations. Table II shows the
structural coverage of CustomerService when invoked
from within the context of RegisterService. Notice
that the coverage is now relatively low. This probably
happens because TS-Register was meant to test
RegisterService without taking into account how
much of the CustomerService was being executed from
that context.

By using the testable version of CustomerService the
integrator can see that the coverage of CustomerService
is low when tested from the perspective of
RegisterService. The limitation of the testable
service approach is that the integrator does not have enough
information neither to evaluate if the measure reached on
CustomerService is good nor to create more test cases
to raise the coverage.

Indeed, coverage of a service could be low for two different
reasons2:

1) Insufficient test cases: The most obvious reason for low
coverage, especially at the beginning of testing, is that

2The coverage could of course be lower than 100% also because of
infeasible requirements (unreachable paths). This issue, however, is not
peculiar to services, and should be handled by the developers of the service.

205

the test set is weak; in devising the test cases, the tester
has probably neglected to consider some interesting
behaviors. In traditional white box testing, by inspecting
the source code and looking at the parts that have
not been covered, the tester can usually identify new
significant test cases.

2) Relative coverage: Different clients may use different
operations of a service or even use the same operations
but in different contexts. A car shop, an estate agent
and a university, for example, may use the same bank
service to make loans to their clients. The car shop may
use short time duration loans, while the estate agent uses
long time duration loans and student loans can start to
be paid after many years. If we consider a test session
of the car shop, for example, the coverage measured
over the whole bank service code would be low and
not realistic, because the other two types of loan would
never be used from that context. We call irrelevant the
test requirements covered by functionalities which are
not used from a specific context.

The first issue can be addressed by adding more test cases.
However, the integrators cannot know which are the test
requirements of the testable service that were not executed,
and why. The second issue arises because the coverage ratio
is computed over a set of test requirements that is unrealistic;
this issue should be addressed by considering a personalized
usage profile for each client of the testable service.

III. BACKGROUND

A. Testable service approach

In previous work we conceived two similar approaches to
develop testable services to improve the testability of SOA
applications by making services more transparent to external
testers while maintaining the flexibility, the dynamism and
the loose coupling of SOA. Testable services [10], [11] are
services instrumented so to provide their clients with coverage
information regarding a test session execution. There are three
main stakeholders in the testable services approaches: the
testable service, the integrator and a coverage provider. The
testable service is a service instrumented to collect information
about the code structure (e.g., instructions, branches and data)
executed during a test session. The integrator uses the testable
service in an orchestration or choreography and uses its inter-
face to get a coverage analysis after a test session execution.
The coverage provider is a service responsible for using the
information about the execution of the testable service and
performing the structural coverage analysis.

In the SOCT approach [10] the instrumentation of the
testable service should be done by the developers themselves,
while the information about the execution of the testable
service is collected by a coverage provider. This coverage
provider is called TCov and is also in charge of generating
the coverage analysis information. In the BISTWS approach
[11], instead, the instrumentation is automatically done by the
coverage provider called TestingWS and the data generated

on its execution are locally stored. TestingWS is also used to
calculate the structural coverage of the testable service.

Beyond these differences, the SOCT and the BISTWS
approaches are very similar and follow basically the same
process and governance framework. In both approaches the
integrator initiates the process by opening a Testing Session,
which is uniquely identified. The integrator then starts launch-
ing test cases on the testable service and can afterwards collect
the coverage information using the session identifier. In both
approaches the testable service has operations to define the
boundaries of a test session and to retrieve coverage infor-
mation: startTest, stopTest and coverageMeasure,
respectively, in SOCT; and startTracing, stopTracing
and getCoverage in BISTWS.

From the point of view of the integrator, it does not matter
who instruments the testable service or how the coverage
information will be calculated. The integrator only wishes to
perform a test session and discover how much of the testable
service is executed when the orchestration is tested. In this
case, either of SOCT or BISTWS approaches could be used
to produce the testable service. The only difference for the
integrator would be the names of the operations to define the
boundaries of the test session or to get the coverage analysis,
but the results from their perspective would be the same.
Therefore, from now on, in this paper we will not distinguish
anymore between SOCT of BISTWS.

We refer to the abstract sequence diagram in Figure 2,
showing an integrator using a testable service in the context
of an orchestration, hiding away details of how the coverage
information is eventually achieved.

Fig. 2. Sequence Diagram of a generic test session of a testable service

B. Built-in testing and metadata

Software components and web services have many similari-
ties. Both of them are self-contained composition units and can
only be accessed through their explicit published interfaces [9].
According to [14], the lack of more information about third
party components brings many problems to the validation,

206

to the maintenance and to the evolution of component-based
applications. In the context of testable services, this is also the
reason why integrators cannot improve their test set and get
a better coverage of the testable service in many situations.
Two approaches in the literature to handle the issue of lack
of information in component testing are: Built-in Testing and
Metadata.

Built-in testing is an approach created to improve the
testability of software components based on the self-testing
and defect-detection concepts of electronic components. The
general idea is to introduce functionalities into the component
to provide its users with better control and observation of its
internal state [9], [15]. A component developed under the built-
in testing concept can also contain test cases or the capability
to generate test cases. These test cases can be used by the
testable component itself for self-testing, and by external users
as well [16].

In the regular mode, the built-in test capabilities are trans-
parent to the component user and the component does not
differ from other components. In the testing mode, however,
the component user can test the component with the help of its
built-in testing features. The component user can invoke the
respective methods of the component, which execute the test,
evaluate autonomously its results, and output a test summary
[16].

A testable service is a type of built-in testing entity because
its testability was improved by operations that enable its ob-
servation regarding structural coverage information. Moreover,
a testable service can also be set to a regular or to a test
session mode. A testable service, however, has neither self
testing capabilities nor built-in test cases made available to its
clients.

In component-based development the problem of lack of
information is also usually handled by providing some meta-
data within the software component. Metadata provide extra
information about the component other than the interface spec-
ifications. Metadata range from finite-state-machine models
and QoS-related information to plain documentation. It may
consist of coverage information, test cases, abstract represen-
tations of source code or assertions about security properties
[13], for example.

Some authors make distinction between a priori and on-
demand metadata. A priori metadata provide information that
was previously created and is attached to the component
when it is released. On-demand metadata provide information
calculated/generated during runtime.

In the sense that it provides testing information, built-in
testing can itself be considered a metadata approach. Bundell
and coauthors [17] pointed that metadata should be used to
provide information to help component users on analysis and
testing activities. They proposed that test specifications and a
set of test cases to test each interface should be provided as
metadata along with software components. In the next section
we present our solution to handle the problem of lack of
information in the testable service architectures using both

concepts of built-in testing and metadata.

IV. THE MTXTM APPROACH

Lack of information and relative coverage is the main
cause of the issues we mentioned before in our motivating
example. We devised an approach in which testable services
are published along with both a priori and on demand built-in
test metadata to provide integrators with more information to
help them to improve the test set when the coverage achieved
is low or not satisfactory. We also propose incremental usage
profile to minimize the relative coverage issue.

The a priori metadata should be created by the developer of
the testable service and they consist of the test set used to test
the service during development time (similarly to the built-
in test concept). The on demand metadata is automatically
generated by the testable service using the a priori metadata.
The usage profile is created by the integrator who uses the
testable service within a composition. In the next subsections
we explain in details these three main components of the
MTxTM approach, which is an extension to our previous work
regarding testable services.

A. A priori metadata

Developers usually test their services before their publica-
tion using available testing techniques, strategies and plans. An
instance of a typical scenario of creating test cases involves
the following activities:

1) The developers creates test cases for each operation
of the service considering its specification. They could
use, for instance, functional testing techniques, such as
category partition or boundary analysis.

2) The developer executes the test cases and get structural
coverage information to evaluate how much their test set
has exercised the code of the service under test.

3) The developer looks at the source code or use flow
models to discover which parts of the service were
not executed yet and then creates test cases to cover
the uncovered test requirements (instructions, branches,
data, . . .).

External clients of testable services can perfectly perform
steps 1 and 2 above, but they cannot perform step 3 because
they do not have access to the source code as the developers
do. For this reason we believe that the developers of testable
services should pack the test cases created during develop-
ment time and export them as the a priori metadata of the
testable service. The a priori metadata should also include the
reasoning performed by the developer to design each test case.

In MTxTM we assume that the a priori metadata represents
the best effort of the developer and that the coverage obtained
is the highest possible. In many cases the structural coverage
reached will not be 100% because of infeasible requirements
(like unreachable paths, for example).

Considering the motivating example presented at the be-
ginning of this paper, Table III presents the test cases of
the testable service CustomerService provided by its

207

Listing 1. XML structure of the a priori metadata
< t e s t c a s e i d ="tc-04" d e s c r i p t i o n ="..."

o p e r a t i o n ="createFromId" r e t u r n ="boolean">
<i n p u t name="ID">1004< / i n p u t>
<i n p u t name="user"> Cust4 < / i n p u t>
<i n p u t name="passwd">Cust4Psswd< / i n p u t>
<i n p u t name="chAnsw1">Answ1< / i n p u t>
<i n p u t name="chAnsw2">Answ1< / i n p u t>
<i n p u t name="email">cus t4@broad . l e a f< / i n p u t>
. . .
<e x p e c t e d> t r u e< / e x p e c t e d>

< / t e s t c a s e>

TABLE IV
NODES OF THE OPERATION CREATEFROMID COVERED BY EACH TEST

CASE OF THE A PRIORI METADATA

Test case 1 2 3 4 5 6 7 8 9 10
tc-01 X X X X X X
tc-02 X X X X X
tc-03 X X X X X X X
tc-04 X X X X X X X X
tc-05 X X X X X X X
tc-06 X X

developer. Note that there are test cases for each operation
of CustomerService and for each test case there is a
description related to the reasoning to create it.

We defined that the developers of testable service using the
MTxTM aproach must express the a priori metadata using
a XML structure in which each test case must contain the
following information: a unique identification (tc-ID); the
name of the operation it refers; the name and the value of
each input parameter; dependencies (some test cases should be
executed after the execution of other test cases); the expected
result given by an oracle; and a quick description in free text
explaining why the test case was created. Listing 1 shows the
tc-04 in a simplified XML format.

As soon as the test set created by the developer is
packed and provided to the testable service as the a priori
metadata, the testable service executes each test case and
creates a list of which test requirements are covered by
each test case. Table IV shows the nodes of the operation
createFromID covered by each test case of the a priori
metadata of CustomerService. The same list is created
for each operation and for each criterion supported by the
testable service.

B. On demand metadata

The on demand metadata of the MTxTM consist of sugges-
tions provided to help clients to improve the coverage of the
testable service reached so far. These metadata are generated
on the fly upon request by some client after a test session and
they are based on the a priori metadata.

The generation of the on demand metadata works as follow.
The client requests the on demand metadata using a test
session identifier. The testable service uses the test session
identifier to make a list of the test requirements which were
not covered during that specific test session. Next, the testable

service uses the a priori metadata to make a list of test cases
that cover the test requirements which were not covered during
the test session informed. The testable service then returns this
list to the client as the on demand metadata.

Suppose, for instance, that a client requested the on de-
mand metadata of CustomerService considering a test
session which not covered the nodes 2 and 3 of the operation
createFromID. The testable service would use the a priori
metadata and identify that tc-05 and tc-06 cover the nodes 2
and 3 and they would be provided as suggestions to the client.

If the client is testing the testable service in isolation, it
is straightforward for him/her to use the test cases in the
on demand metadata to improve the coverage. If the client
is instead an integrator and is testing an orchestration or
a choreography, then the provided test cases could not be
invoked immediately, as the testable service is not directly
invoked. The client will have to analyze the input data of
the suggested test cases and identify an integration test for
the orchestration or choreography that invokes the testable
service with those or similar inputs. It should be an easy task
because integrators own the source code of the composition
and they should be able to create suitable test cases for the
composition to repeat the same test configuration suggested by
the on demand metadata. The situations in which the suggested
test cases cannot be repeated can be handled by usage profiles
(see next subsection).

In the MTxTM approach, we also propose that the order of
the test cases suggested as the on demand metadata is not cho-
sen by chance. By applying a common greedy heuristics [18],
those test cases that cover more uncovered test requirements
come first. In this way, the client of the testable service can
try, for example, to use only a few among the first test cases
to improve the coverage of the test set, instead of using all
the suggested test cases. We use such heuristics to delimit
the number of test cases. The information of the on demand
metadata is the same as that of the a priori metadata.

C. Incremental usage profile

The developer of a service does not know in advance in
which orchestrations or choreographies it will be used, thus
when the service is tested in isolation at development time, it
is tested without considering any context. Consequently, the
a priori metadata are generic. The on demand metadata are
also generic because the testable service does not know which
functionalities of the service would be or would not be used
by the integrator that request the coverage information (see
the notion of relative coverage introduced in Section II).

To overcome this issue and customize the test metadata
for the context in which the testable service is used, we also
propose in the MTxTM approach an incremental usage profile
that characterizes the testable service’s client. It provides the
following information:

• An identification of the orchestration or choreography
that is using the testable service.

• An identifier for future profile updates.

208

TABLE III
THE A PRIORI METADATA OF CUSTOMERSERVICE (TS-CUSTOMER)

Operation: createFromID
TC-ID ID user passwd email chAnsw1 chAnsw2 register Description
tc-01 1001 cust1 c1passwd c1@bleaf.com true Create and register (true)
tc-02 1002 cust2 c2passwd c2@bleaf.com false Create and don’t register (false)
tc-03 1003 cust3 c3passwd c3@bleaf.com Answ1-ct3 true Create with chAnswer1
tc-04 1004 cust4 c4passwd c4@bleaf.com Answ1-c4 Answ2-c4 true Create with chAnswer1 and 2
tc-05 null cust5 c5passwd c5@bleaf.com true Create using an auto generated ID
tc-06 1001 Create using an existent ID

Operation: registerCustomer
ID user passwd email Description

tc-07 null cust7 c7passwd c7@bleaf.com Register and create a customer at the same time (id=null)
tc-08 1002 cust2 c2passwd Register an unregistered customer using a valid ID

Operation: readByID
ID Desc.

tc-09 1001 Invoke the operation using an existent ID
tc-10 7777 Invoke the operation using an invalid ID

Operation: readByUsername
user Desc.

tc-11 cust4 Invoke the operation using an existent username
tc-12 custN Invoke the operation using an invalid username

Operation: readByEmail
email Desc.

tc-13 c3@... Invoke the operation using an existent email
tc-14 cN@... Invoke the operation using an invalid email

Operation: changePassword
user New Confirm Desc.

tc-15 cust23 c23New c23New Try change the passwd using an invalid customer
tc-16 cust4 c4New c4New Try to change the passwd using a valid customer

• A list of the operations of the testable service that will
be actually used by this client. The testable service
will calculate the coverage based on this list instead
of considering all operations of the service. The on
demand metadata will also be generated based only on
the operations actually used and informed in this section
of the usage profile.

• A list of irrelevant or contextually infeasible test cases.
More precisely, these are the test cases in the a priori
metadata that would never be executed in the context
of this client. This can happen if the test case refers
to a not used operation or to a situation in which the
combination of parameter values cannot be produced in
the given composition.

We consider that a testable service may be tested in iter-
ations. The information in the usage profile can be used by
the testable service at each iteration to refine the calculation
of coverage and revise the on demand metadata, so to suggest
additional test cases based only on operations that are really
used. Clients can provide the testable service with updates to
the usage profile information at any time. A practical use of
a usage profile is presented in Section V.

D. Business Model

We believe that the test metadata model proposed for
testable services could change not only the way developers
and integrators technically interact in testing of compositions,
but also change the business model behind SOA orchestra-
tions and choreographies. The structural testing capability of
testable service can already bring competition advantage on

the market; we believe that the enhanced testability of “more
testable” services can aggregate even more value to market.
Consideration in depth of a business model is outside the scope
of this paper. In brief, we foresee a business scenario in which
many versions of a service would be made available with
varying costs depending on the testability features it provides:

• Regular service. Provides only its interface to its clients.
• Testable service. Provides its interface and structural

testing capability.
• Testable service with a priori test metadata.
• Testable service with a priori and on demand test meta-

data.

V. CASE STUDY

In this section we report a first assessment of the proposed
approach on the case study presented in Section II. The
example used is small, but genuine, since we used existing
services and test sets reused from a real application.

As we illustrated (see Figure 1), the e-commerce instantia-
tion of the BroadLeafCommerce framework has an orches-
tration called RegisterService that uses another ser-
vice called CustomerService. RegisterService has
2 public operations, while CustomerService has 7 public
operations. The developers of this e-commerce application
provide a test set to test RegisterService and also a test
set for testing CustomerService.

In this case study, one of the authors played the role
of the integrator and CustomerService represents the
“more testable” service. The integrator wants to improve
the coverage of CustomerService reached when testing

209

RegisterService, with respect to that shown in Table I.
The study focuses on the following research questions.

• RQ1: Are the test metadata useful for helping integrators
improve the coverage percentage of the test set of a
composition? In particular, we will assess:

RQ1-a whether by using the on demand metadata of the
testable service the integrator can create more or-
chestration test cases which improve the coverage of
the testable service;

RQ1-b whether the integrator can identify the irrelevant test
cases from the test metadata; and

RQ1-c whether the usage profile is useful to generate a more
meaningful coverage analysis report.

• RQ2 Is the MTxTM approach more effective than a
random test generation approach to improve the coverage
reached? In particular, we will assess:

RQ2-a whether by using the same number of additional test
cases, the coverage reached using MTxTM is greater
than the coverage achieved using random test cases;
and

RQ2-b whether, when the coverage reached by MTxTM is
the same or higher than the coverage reached by
random test cases, the number of MTxTM test cases
is lower than the number of random test cases.

A. Improving coverage using MTxTM

The execution of the test cases of CustomerService
achieved a high coverage (see Table I), while the execution
of the test cases of RegisterService orchestration ob-
tained a lower coverage regarding the CustomerService
structure (see Table II). This study starts from this con-
text and the in integrator wants to increase the cover-
age of CustomerService when tested from within the
RegisterService orchestration. This is done in iterations.

At each successive iteration the integrator can augment the
test set of RegisterService (TS-Register) by using the
on demand test metadata provided by CustomerService.
Precisely, at each iteration the integrator must perform the
following activities (as shown in Figure 3:

1) Get the list of suggested test cases provided by the
testable service as on demand metadata.

2) Use the test cases suggested by the testable service to
create some new test cases (if possible) to augment
the test set of RegisterService (orchestration) and
to get a better coverage on CustomerService. The
integrator cannot directly use the suggested test cases,
but must adapt the input information to create new
test cases of the orchestration, which has different op-
erations with different input parameters. This activity
cannot be easily automated but it should be easy to
create test cases manually since the integrator has full
control over the orchestration and knows how each input
parameter is handled by the orchestration to invoke
CustomerService.

Fig. 3. Activities performed by the integrator at each iteration

3) Create or update the usage profile of the orchestration
by defining the list of operations of the testable service
that are actually used by the orchestration; and by
identifying possible irrelevant test requirements, which
are indirectly identified (as the integrator does not have
direct visibility of testable service internals), by those
test cases among the suggested ones that cannot be
executed in the context of the orchestration.

4) Execute the new test cases created to augment the test
set TS-Register.

5) Get the new structural coverage analysis of
CustomerService.

This process is repeated until the integrator is satisfied
with the coverage reached or no more useful test cases are
suggested.

1) First iteration:: The integrator executed the original
test set of RegisterService that contains 4 test cases
and obtained the coverage presented in Table II. The on
demand test metadata progressively ordered suggested by
CustomerService after the execution of the test cases are
the following: tc-04, tc-03, tc-01, tc-02, tc-06, tc-08, tc-16,
tc-05, tc-15, tc-09, tc-11, tc-12, tc-13. The detail of each test
case is presented in Table III (Col. 5, 6 and 7).

2) Second iteration:: The integrator created new test cases
to test RegisterService based on the test cases tc-04,
tc-03 and tc-01 (these are the first ones in the list, we recall
that the test cases are ordered according to how many more
uncovered test requirements they cover). In this case study we
arbitrarily set to three the number of added test cases at each
iteration.

Next, the integrator identified the operations of
CustomerService that are actually used by
RegisterService and created the usage profile of
the orchestration. The integrator also identified the test
cases that would never be executed in the context of
RegisterService and set the section ”irrelevant”. Table
V shows the usage profile of RegisterService created
in this iteration.

210

TABLE V
REGISTERSERVICE USAGE PROFILE

Name RegisterService
ID OPF-RS-001
Operations createCustomerFromId

registerCustomer
saveCustomer
readById
readByUsername

Irrelevant test cases tc-11,tc-13, tc-15,tc-16

The integrator executed the augmented test set of
RegisterService (now with 7 test cases) after submitting
the usage profile to CustomerService. Table VI (Col. 2,3
and 4) shows the coverage reached after the execution of this
test set. Notice that the coverage values have increased and
the operations that are not used by the RegisterService
does not appear anymore in the coverage analysis. The test
requirements exclusively covered by the test cases identified in
the “irrelevant” section of the usage profile are not considered
in computing the coverage ratio. In italic we show the coverage
measures of CustomerService which would be obtained
without considering the usage profile.

TABLE VI
STRUCTURAL COVERAGE ANALYSIS OF CUSTOMERSERVICE IN THE

SECOND ITERATION

Second iteration
Service all-nodes all-edges all-uses
CustomerService 84% 69% 67%
Without usage profile 67% 58% 56%
By operation all-nodes all-edges all-uses
createFromId 81% 71% 52%
registerCustomer 100% 100% 100%
saveCustomer 72% 53% 51%
readById 66% 50% 44%
readByUsername 100% 100% 100%

After the test session CustomerService generated the
on demand metadata and suggested the following test cases:
tc-03, tc-04, tc-06, tc-01, tc-05, tc-09, tc-02. The curious
thing about this list is that the test cases already used in the
second iteration (namely, tc-01, tc-03 and tc-04) appear again.
It is not, however, a mistake of the CustomerService
on providing the on demand metadata. This happens because
RegisterService handles the input data before invoking
CustomerService and it is not always possible to recreate
the same conditions in which the CustomerService was
tested as a single service. This fact evidences that despite using
the same service, orchestrations handle data in different ways
and require different functionalities from a single operation.

3) Third iteration:: The integrator decided not to con-
sider the already used test cases (tc-04, tc-03 and tc-
01) suggested by CustomerService. New test cases for
RegisterService were created based on the test cases
tc-06, tc-05 and tc-09. There was no need to update the usage
profile of RegisterService in this iteration.

The test set of RegisterService now contains 10 test
cases and obtained the coverage measures presented in Table

VII. Note that the coverage achieved is further increased.
The following four test cases are the on demand metadata
generated by CustomerService this time: tc-03, tc-04, tc-
01, tc-02. Of these, tc-04, tc-03 and tc-01 have been already
used and the only difference between the test cases tc-01
and tc-02 is the value of the input parameter “register”,
which is not taken as input parameter by any operation of
RegisterService. Hence the integrator decides to stop
the test set augmentation.

TABLE VII
STRUCTURAL COVERAGE ANALYSIS OF CUSTOMERSERVICE IN THE

THIRD ITERATION

Third iteration
Service all-nodes all-edges all-uses
CustomerService 90% 79% 78%
Without usage profile 72% 67% 65%
By operation all-nodes all-edges all-uses
createFromId 90% 92% 72%
registerCustomer 100% 100% 100%
saveCustomer 72% 53% 51
readById 100% 100% 100%
readByUsername 100% 100% 100%

B. Improving coverage using random test cases

The case study presented above showed a somewhat com-
plex process to improve the coverage of CustomerService
when invoked in the context of RegisterService. A
natural question arises whether this is worth, or instead the
integrator could anyway increase the coverage easily by just
continuing to test. Hence, we performed a comparison with
additional random test cases as a baseline. We used an
application provided by the web site GENERATE DATA3 to
generate the random test cases. We set the number and the type
of the parameters of the operations of RegisterService
and generated 120 test cases using random data. The number
and the combination of the input parameters of each random
test case was also selected randomly.

In a first iteration of this study, we executed 20 times the
test set provided by the developers (ts-Register) plus six
new random test cases. We decided to use 6 new test cases in
this study because it is the number of new test cases created
using the MTxTM approach. In a second iteration we executed
the original test cases of RegisterService plus 50 new
random test cases, and in the third iteration we executed the
original test set of RegisterService plus 100 new random
test cases. Rows 4 to 6 of Table VIII shows the coverage
analysis obtained by each iteration of this case study using
random test cases.

C. Discussion

Considering the case study performed we attempt to provide
preliminary answers to both RQ1 and RQ2. The integrator
was able to analyze the on demand metadata provided by
CustomerService and create new test cases to the test
set ts-Register. In fact six new test cases have been

3http://www.generatedata.com/

211

created and this raised the coverage of CustomerService
(RQ1-a). The integrator was also able to identify the irrelevant
requirements of the on demand metadata and create an usage
profile for the orchestration (RQ1-b). The testable service used
the usage profile of RegisterService and produced a
coverage analysis specific for that profile, disregarding the
operations not used and the ”irrelevant” test cases (RQ1-c).

Concerning RQ2, Table VIII shows, for each approach, the
number of test cases created for RegisterService and the
coverage reached on CustomerService at each iteration.
Note that the coverage reached by the test cases created by
MTxTM is higher than the coverage achieved by the random
approach (RQ2-a). MTxTM leads to the creation of new six
test cases to reach a coverage measure that is higher than the
coverage achieved by the random approach after creating new
100 test cases (RQ2-b).

TABLE VIII
SUMMARY OF THE RESULTS OF THE CASE STUDY

Approach Iter. #TC all-nodes all-edges all-uses
Random 1st 10 74% 56% 56%
Random 2nd 54 84% 68% 64%
Random 3rd 104 84% 75% 71%
MTxTM 1st 4 50% 34% 34%
MTxTM 2nd 7 84% 69% 67%
MTxTM 3rd 10 90% 79% 78%

RQ2-b is related to the effort to raise the coverage of
ts-Register. Using MTxTM the integrator cannot use the
on demand metadata as they are. The integrator needs to study
the input values and makes adaptations to create test cases
suitable to the operations of the orchestration. This requires
human interaction and takes more time than using a random
approach, for example. If we look at Table VIII, the coverage
reached by the random approach after creating and executing
100 new test cases is not so far from the coverage reached by
MTxTM after creating 6 new test cases. The time to create
6 new test cases was longer than the time to create 100 new
random test cases. In SOA testing, however, the lesser the
number of test cases the better.

Indeed, when testing a third-party service on line, “super-
fluous requests to Web Services may bring heavy burden to
the network, software, and hardware of service providers, and
even disturb service users’ normal requests” [3]. Besides, “if
the service provider allows massive vicious requests to a Web
Service within a short time, the requests may congest the
network or even crash the service’s server” [3] and cause a
denial-of-service phenomena [4]. In fact, there are services
that define the upper limit of the number of requests that can
be performed by a client. If the number of invocation exceeds
the limit, the extra requests are ignored [3]. It is also important
to keep the number of test cases low if the services under test
are charged on a per-use basis [4].

D. Threats to validity

In this subsection we discuss the threats to the validity of
this case study, regarding the construct, internal and external

validity. To ensure construct validity, we took the case study
from a real environment and the orchestration within which
the testable service has been tested is an application that is
used in practice. The way this case study was performed also
represents as closely as possible the typical scenario of a
testing activity in practice. Therefore, we do not see major
threats to construct validity, i.e., the case study represents the
intended concept of the MTxTM approach.

A major confounding factor of the internal validity of the
case study is that its subjects were the same proposers of the
approach under evaluation. It is to minimize this confound-
ing factor that we only used the test data provided on the
BroadLeafCommerce web site. We cannot however exclude
its impact, and we plan to perform further case studies using
independent subjects.

The external validity of this study case cannot be assured.
The objects of the case study are real, but just one case
study may not be representative and we cannot generalize
the results of this specific study for all situations or for all
applications of the domain. Further evaluation is required in
order to generalize the results we obtained with this case study.

VI. RELATED WORK

Service testing is actively researched, as recently surveyed
by Canfora et al. [4]. We focus here on testing of compositions
of services that might have been developed by independent
organizations. The issues encountered in testing a composition
of services are investigated by Bucchiarone et al. [19].

Most existing approaches to SOA testing validate the ser-
vices invoked in a composition as black-boxes. Indeed, the
shared view is that for SOA integrators “a service is just
an interface, and this hinders the use of traditional white-
box coverage approaches” [4]. The need to enhance black-
box testing with coverage information of tested services has
also been recognized by Li et al. [20]. A “grey-box testing”
approach is introduced, in which, after test execution, the
produced test traces are collected and analyzed by the so-called
BPELTester tool. However, the assumption of BPELTester
that the orchestrator can access and analyze service execution
traces breaks the loose coupling between service provider and
service user.

The idea of leveraging service execution traces is also
pursued by Benharref et al. [21]. Similarly to [10] and [11],
this work extends SOA with observation capabilities by intro-
ducing an “Observer” stakeholder into the ESOA (Extended
SOA) framework. ESOA, however, does so for a different goal
than the one proposed in this paper: while our focus is to
monitor structural coverage, in ESOA services are monitored
(passive testing) against a state model.

This paper is aimed at exploiting the coverage measures
obtained for testable services for improving the test set.
This is inspired by metadata and built-in testing, which we
already introduced in Section II. Briand et. al. [22] presented
an approach in which the developer must provide metadata
with constraints called CSPE (Constraints on Succeeding and
Preceding Events). The metadata is then used by the tester to

212

generate test cases to cover each constraint of the CSPE. In this
approach the tester uses the constraints to generate the test set
and the coverage is given according to the constraints defined
by the developer. In our approach the metadata is provided
to help testers improve the coverage of the testable service
even when it is tested in the context of an orchestration. The
test cases suggested are presented with real input values while
constraints generally refer to generic situations.

VII. CONCLUDING REMARKS

This paper presented a test metadata model for testable
services using concepts of built-in testing and metadata. The
proposed approach enhances the way integrators can interact
with testable services. Integrators can test the testable service
in isolation or in the context of an orchestration or choreog-
raphy and get more than a structural coverage analysis report,
as in previous approaches [10], [11]. They can also get the
a priori (static) and/or the on demand (dynamic) metadata of
the testable service.

MTXTM helps address the two issues we identified in the
motivating scenario. The insufficient test cases is-
sue is mitigated by both a priori and on demand metadata
provided by the testable service. The case study we performed
shows that the integrator was able to use the metadata infor-
mation to create more test cases to test the orchestration and
consequently improve the coverage reached on the testable
service. The relative coverage issue is mitigated by
the usage profile that is used to calculate a suitable coverage
considering the context from which the testable service is
called.

A related question is whether it is realistic to expect service
developers to create these specific metadata since this requires
additional effort. We believe that for developers committed to
create services with good quality the test scaffolding activities
we propose in this paper would be straightforward. Further,
if it were empirically demonstrated that provision of testable
services with metadata could enhance the quality of orches-
trations or choreographies, developers might be motivated to
provide such metadata as an optional value-added feature [13]
for which they could charge a fee, thus enhancing the value
of their services.

As future work we intend to perform further evaluation of
the approach via more formal experiments. We also intend
to study how the MTxTM approach could be used in the
context of choreographies, whereas here it was applied for
orchestrations. For this, the approach will be used in the
context of the CHOReOS project 4, which aims at implement-
ing a framework for scalable choreography development. The
MTxTM approach will be used in the Governance, Verification
and Validation support of the framework.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank the Brazilian funding
agency FAPESP (process 2008/03252-2) for the financial sup-

4www.choreos.eu

port. This work has been partially supported by the European
Project FP7 IP 257178 CHOReOS.

REFERENCES

[1] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
oriented computing: a research roadmap,” Int. J. Coop. Inf. Syst., vol. 17,
no. 2, pp. 223–255, 2008.

[2] H. Hass and A. Brown, “Web Services Glossary,W3C Working Group
Note,” 2004. [Online]. Available: http://www.w3.org/TR/ws-gloss/

[3] S. shan Hou, L. Zhang, T. Xie, and J. su Sun, “Quota-constrained test-
case prioritization for regression testing of service-centric systems,” in
Proc. IEEE ICSM, 2008, pp. 257–266.

[4] G. Canfora and M. Di Penta, Service Oriented Architecture Testing : A
Survey, ser. LNCS. Springer, 2009, no. 5413, pp. 78–105.

[5] M. H. Mustafa Bozkurt and Y. Hassoun, “Testing web services: A
survey,” Department of Computer Science, King’s College London,
Tech. Rep. TR-10-01, January 2010.

[6] IEEE, “IEEE Standard Glossary of Software Engineer-
ing Terminology,” Tech. Rep., 1990. [Online]. Available:
http://dx.doi.org/10.1109/IEEESTD.1990.101064

[7] L. O’Brien, P. Merson, and L. Bass, “Quality attributes for service-
oriented architectures,” in Proc. of the Int. Workshop on Systems
Development in SOA Environments, 2007, p. 3.

[8] W. T. Tsai, J. Gao, X. Wei, and Y. Chen, “Testability of software in
service-oriented architecture,” in Proc. of the 30th Annual Int. Computer
Software and Applications Conf., 2006, pp. 163–170.

[9] H.-G. Gross, Component-Based Software Testing with UML. Springer,
2005.

[10] C. Bartolini, A. Bertolino, S. Elbaum, and E. Marchetti, “Bringing
white-box testing to service oriented architectures through a service
oriented approach,” J. Syst. Softw., vol. 84, pp. 655–668, April 2011.
[Online]. Available: http://dx.doi.org/10.1016/j.jss.2010.10.024

[11] M. M. Eler, M. E. Delamaro, J. C. Maldonado, and P. C. Masiero,
“Built-in structural testing of web services,” Brazilian Symp. on Soft.
Engineering, vol. 0, pp. 70–79, 2010.

[12] Y. Wang and G. King, “A european cots architecture with built-in tests,”
in OOIS ’02: Proc. 8th Int. Conf. Object-Oriented Information Systems.
London, UK: Springer-Verlag, 2002, pp. 336–347.

[13] A. Orso, M. J. Harrold, and D. Rosenblum, “Component metadata
for software engineering tasks,” in 2nd Int. Workshop on Engineering
Distributed Objects (EDO 2000). Springer, 2000, pp. 129–144.

[14] M. J. Harrold, A. Orso, D. Rosenblum, G. Rothermel, and M. L.
Soffa, “Using component metadata to support the regression testing of
component-based software,” Tech. Rep. GIT-CC-00-38, 2000.

[15] J. Hornstein and H. Edler, “Test reuse in CBSE using built-in tests,” in
Workshop on Component-based Software Engineering, 2002.

[16] S. Beydeda and V. Gruhn, “State of the art in testing components,” in
Int. Conf. on Quality Software (QSIC). IEEE Computer. Society Press,
2003, pp. 146–153.

[17] G. Bundell, G. Lee, J. Morris, K. Parker, and P. Lam, “A software
component verification tool,” in Int. Conf. on Software Methods
and Tools (SMT). IEEE, 2000, pp. 137– 146. [Online]. Available:
citeseer.ist.psu.edu/bundell00software.html

[18] S. Tallam and N. Gupta, “A concept analysis inspired greedy
algorithm for test suite minimization,” SIGSOFT Softw. Eng.
Notes, vol. 31, pp. 35–42, Sept. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1108768.1108802

[19] A. Bucchiarone, H. Melgratti, and F. Severoni, “Testing service com-
position,” in Proceedings of the 8th Argentine Symposium on Software
Engineering, 2007.

[20] Z. J. Li, H. F. Tan, H. H. Liu, J. Zhu, and N. M. Mitsumori, “Business-
process-driven gray-box SOA testing,” IBM Syst. J., vol. 47, no. 3, pp.
457–472, 2008.

[21] A. Benharref, R. Dssouli, M. A. Serhani, and R. Glitho, “Efficient traces’
collection mechanisms for passive testing of web services,” Information
Software Technology Journal, vol. 51, no. 2, pp. 362–374, 2009.

[22] L. C. Briand, Y. Labiche, and M. M. Sówka, “Automated, contract-based
user testing of commercial-off-the-shelf components,” in ICSE ’06: Proc.
28th Int. Conf. on Software Engineering. New York, NY, USA: ACM,
2006, pp. 92–101.

213

