Proceedings of The 6th IEEE International Symposium on Service Oriented System Engineering (SOSE 2011)

Using structural testing information to support
monitoring activities

Marcelo Medeiros Eler, Marcio Eduardo Delamaro, Paulo Cesar Masiero
ICMC/USP
Sao Carlos/SP - Brazil
Email: {mareler,delamaro,masiero} @icmc.usp.br

Abstract—Third party services can change without notification
as they are usually under the control of external providers.
Unexpected changes can clash the integrity of a composition
and monitoring approaches have been proposed to detect such
changes. Many of these approaches are based on executing all test
cases of a regression test set to check whether the behavior of the
monitored service remains the same. Such strategy, however, can
be very expensive as costs may be associated to the testing activity.
In this paper we propose using structural testing information
to detect structural changes of monitored services and select
only a reduced number of test cases of the regression test set
to be executed. We also present three exploratory case studies to
evaluate our approach.

I. INTRODUCTION

Third party services used in Service Oriented Architectures
(SOA) are usually under the control of different ownership
domains and they can change without notification. Monitoring
is an important activity of the SOA development process since
it is used to detect changes of services to prevent that an
unexpected change clashes the integrity of the composition
(orchestration or choreography) in which it is integrated. Many
approaches have been proposed in the literature to detect
changes in third party services concerning both functional and
non-functional requirements [1]-[10].

Concerning functional requirements, a common solution is
to periodically re-run a set of test cases (regression test) to
detect changes of the service [11]. Traditionally, regressing
testing is used after a well known change of a service, but in
SOA contexts, it has been used to detect changes [11]. This
can be expensive as costs may be associated with the execution
of test cases. Also, some services only allow a limited number
of invocations in a short period of time. Therefore, test cases
should be chosen with accuracy and their number should be
limited [11], [12].

In this paper we propose using structural testing information
to support and improve traditional monitoring activities. We
aim at detecting structural changes of monitored services
before executing a bunch of test cases. If a modification is
identified then a reduced number of test cases are selected to
be executed instead of executing the whole regression test set.
In such approach, regression test is used after a well known
modification instead of being used to detect any change. We
also propose using structural testing information to check for
untested code into monitored services.

978-1-4673-0412-2/11/$26.00 ©2011 IEEE

Structural testing is not commonly used in SOA contexts
because of the black box nature of services, but previous work
have independently developed two approaches to introduce
structural testing into a SOA context [13], [14]. The services
developed according to their approaches are called testable
services and provide their clients with structural testing infor-
mation. The monitoring strategy we purpose in this paper is
suitable to services that provide their clients with structural
information through testing interfaces (as the testable services
[13], [14]) or through test metadata [15].

This paper is organized as follows. Section II presents
the background of our approach. Section III presents the
monitoring approach we propose in this paper. Section IV
shows the validation of our approach by means of a case study.
Section V presents some related work. Section VI presents
concluding remarks and future work related to this paper.

II. BACKGROUND
A. Structural Testing Criteria

Structural testing focus on testing the whole structure of
a program, considering instructions, control and data flow.
It derives test data from the implementation according to
criteria that are used to determine whether the program under
test is completely tested [16], [17]. Structural testing usually
adopts a model called control-flow graph (CFG) to represent
the structure of a program under test. Each node of a CFG
represents a block of instructions and each edge represents a
possible transition from a block to another. Each block is an
atomic sequence of instructions without flow deviation.

The most known structural testing criteria are the following:
all-nodes, all-edges and all-uses. Test cases are created to met
test requirements generated for each structural criterion. After
executing the test cases, a coverage analysis is performed to
measure how many test requirements were covered, which
indicates how much of the structure of the program was
actually exercised during the test session.

Figure 1 shows a Java method and its CFG. The structural
test requirements of WSFactorial are presented in Table I. In
the all-uses criterion the requirement (x,4,(3,5)) means that
variable x is defined in node 4 and used in a decision that
takes the control flow from node 3 to node 5. The requirement
(x,1,4) means that variable x is defined in node 1 and is used
in a computation in node 4.

IEEE
computer
® psouety

Hong
Stamp

1 public int calcFactorial(int N)
2 ()
3 int x=N;
4 if (x<1)
5 return 1; 9 e
6 else
7 while (x>1)
8 N=N*(--x); o @
9 return N;
10}
Fig. 1. Source code and the CFG of the operation calcFactorial
TABLE I
TEST REQUIREMENTS OF CALCFACTORIAL
Criterion | Test requirements
All-nodes | 1, 2, 3,4, 5
All-edges [(1,2), (1,3), 3.4, (3.5), (4.3)
All-uses | (N,1,5), (N,1,4), (N,4,5), (x,4,(3,5)), (x,4,(3,4)), (x,1,4),
(x,1,3.4)), (x,1,(3,5)), (x,1,(1,2)), (x,1,(1,3))

B. A Testable Service approach

Services are generally provided as black box and Bartolini
et. al. [13] and Eler et. al. [14] conceived two similar ap-
proaches called BISTWS (Built-in structural testing of web
services) and SOCT (Service Oriented Coverage Testing),
respectively, to improve the testability of SOA applications
by making services more transparent to external testers. Such
services have been called testable services.

The testable service is a service instrumented to trace its
own execution and collect information about the instructions,
branches and data exercised during a test session. Testers can
set a testable service to a testing mode, carry out a test session
and use the testing interface of the testable service to get
structural coverage information. Particularly, testable services
created with the BISTWS approach [14] can can also provide
their clients with testing requirements generated based on the
structural criteria all-nodes, all-edges and all-uses.

III. A MONITORING STRATEGY SUPPORTED BY
STRUCTURAL TESTING INFORMATION

The most common strategy to monitor services is to execute
the whole regression test set to detect changes of the monitored
service. Such strategy, however, can be very expensive since
costs may be associated with the test of services. There can
also be services that allow clients to make only a limited
number of invocations during a period of time. Therefore, test
cases should be chosen with accuracy and their number should
be limited [11], [12].

The monitoring strategy we propose using structural test-
ing information follows these steps: (A) check for structural
modification; (B) check for behavioral change; (C) check
for untested code; and (D) react. Before executing these
monitoring steps, the following activities must be performed:
(i) the test requirements of the monitored service must be
collected to create a requirements-baseline, which will contain
the test requirements of the original service; (ii) all test cases
of the regression test set must be executed and the test results
must be used to create a results-baseline; (iii) the structural

26

coverage analysis obtained after the execution of the whole
regression test set must used to create a coverage-baseline.
The coverage-baseline shows how much of the service have
been exercised by the test cases of the regression test set,
concerning the structural testing criteria implemented. In the
BISTWS approach, for example, the testable service can
provide coverage information regarding the criteria all-nodes,
all-edges and all-uses.

A. Check for structural modification

This step is used to identify structural changes of the
monitored service. This can be done by comparing the test
requirements collected from the monitored service with the
requirements-baseline. The purpose of the comparison is to
identify differences concerning nodes, edges, uses and instruc-
tions. The result of this activity is a list of nodes and edges
affected by any of the modifications identified (control-flow
or data-flow).

Test requirements directly reflects the implementation of
the service since a small change of the implementation also
changes the test requirements. Regardless of the many possible
ways the source code of the service can be modified, the
modification of the test requirements are usually the same:

1) Changing of the control-flow this means that instruc-
tions that deviates the control flow of the program
(while, if, switch) were added to or removed from the
source code of the operation. Consequently, nodes and
edges were added to or removed from the structure of
the operation.

Changing of the data-flow: this means that variables
are being used in nodes or edges where they were not
being used or variables are no longer being used in
nodes or edges where they were being used. The all-
uses criterion usually defines the test requirement as
a pair definition-use. The definition is the node where
the variable is defined and the use is the node or edge
where the variable is used. In this approach we are only
concerned with changes regarding the uses.

No changes of control or data-flow: this means that
new instructions were added to the source code of the
service without affecting nodes, edges and uses; or the
mathematical or boolean operators used in computations
or decisions have changed; or any other change has been
made that does not affect neither the CFG structure nor
the uses of the variables, except when the modification
is only the definition of a variable. This change can be
identified using information other than the test require-
ments. One possible solution is to use the hash code of
the nodes of the CFG [7].

2)

3)

B. Check for behavioral change

This step is used to check whether the behavior of the
monitored service has changed. The list of nodes, edges,
uses and instructions affected by the modification identified
throug the test requirements analysis (previous step) is used
to select test cases that cover at least one of the modified test

requirements. This strategy allows using regression test in a
tradicional way - after a well known modification. The results
of the test cases execution are thus compared to the (results-
baseline) and this will indicate whether the behavior of the
monitored service has changed.

Note that using this strategy the execution of the test cases
depends on the structural changes identification. If no change
is identified then no test case are executed. Even when a
structural change is detected and test cases are launched, the
number of test cases executed is reduced because only the test
cases related to the parts of the code that have change are
executed.

C. Check for untested code

This step is used to check whether there are parts of the
service that have not been tested yet. The coverage information
obtained after the execution of the test cases selected in
the previous step is compared to the coverage-baseline. A
structural coverage modification indicates that something has
change within the service, even when no behavioral change is
detected in the previous step. Sometimes new pieces of code
are added to the service but it does not affect its behavior. The
coverage analysis, however, can identify that there are new
parts of the code and that they were not executed yet because
the path followed by each test case would be different, i.e., the
test requirements covered by each test case is different when
the implementation changes.

D. React

Changes of a service are not necessarily a bad thing. A
bad change is when defects are introduced in the service.
We can also consider a bad change when the business rules
are modified clashing the integrity of the orchestration or
choreography that uses the service. The good change is when
the service evolves without changing its behavior and pos-
sibly improving its functionalities. Table II presents possible
changes detected by the proposed approach. This mapping also
indicates whether and how a reaction should be performed
according to the change detected.

TABLE I
CHANGES AND RESPECTIVE SUGGESTED REACTIONS

All TC passed |At least 1 TC failed
Coverage has not changed 1 2
Coverage is higher 1 2
Coverage is lower 3 2

Here we present possible actions for each situation:

o Situation 1: This is a good change (considering only
functional and structural requirements). All test cases
(TC) passed and the coverage is the same or higher. The
integrator should do nothing.

Situation 2: This is a bad change since failures have
been found due to the changes detected. The integrator
should replace the erroneous service by other service that
delivers the same functionalities. In the absence of other
service for replacement the provider has to be notified.

27

The integrator may also adapt the composition to comply
with new or different business rules if this is the case.

Situation 3: This is neither a good nor a bad change - it
is neutral. The change of the service has not affected the
behavior of the service, which is good. The problem is
that the non executed code can hide faults as in the case
of the component reused in the Ariane 5 rocket. In this
case the integrator should create more test cases to test
the parts of the code that have not been executed yet.

E. Implementation

Performing monitoring activities manually is difficult and
error-prone. We have developed a small framework to au-
tomatize setps A to C. The instantiation of this framework
consists on extending a class called BaseTest, which is an
abstract JUnit test class. The instantiation must inform to the
framework which service should be tested, which services
should be monitored and which test cases are part of the
regression test set.

Figure 3 shows an illustration of a particular instantiation
of our monitoring framework. The framework was set to
test the orchestration Shopping Service and to monitor
the services CatalogService, ZipCodeService and
ShippingService. In this scenario, at each modification of
any of the monitored services that is identified the framework
selects suitable test cases to verify whether the behavior of
ShoppingService has changed. It is also possible to set
test cases for each monitored service.

IV. VALIDATION

In this section we present three exploratory case studies
to validate our approach. In all these three case studies we
perform the monitoring of services that have been transformed
in testable services using the BISTWS approach [14].

The research questions of our case studies are the following:

a Did the monitoring approach identify all changes in the
monitored service?

Is the number of test cases selected to be executed again
satisfactory, i.e., is it less than the total number of test
cases of the regression test?

Are the test cases selected to be executed again suitable
to reveal changes in the monitored service? To answer
this question we have to measure:

b

c.1 The number of test cases that indicated the behav-
ioral change.

c¢.2 The number of test cases that were not selected and
would reveal any change if they were executed.

A. Exploratory study 1: monitoring a testable service as a
single service

The first version of WSFactorial (source code and CFG) is
presented in Figure 1. The test requirements of the operation
calcFactorial are presented in Table I. Figure 2 shows
four versions of WSFactorial (V2 to V5). For each version we

public int calcFactorial(int N)
{
int x=N;
if (x<1){
if (x<0)
return -999;
else return 1;

else
while (x>1)
N=N*(--x);
return N;

}

public int calcFactorial(int N)

int x=N;
if (x<1) {
if (x<0)
return -999;
else return 1;

else
while (x>1)
N=N*calcFactorial(--x);
return N;

}

public int calcFactorial(int N)

int x=N;
if (x<1){
if (x<0)
return -999;
else return 1;
}
else
if (x>1)
N=N*calcFactorial(--x);
return N;

}

public int calcFactorial(int N)

int x=N;
if (x<1) {
if (x<0)
return -999;
else return 1;

}

else

if (N>1)
N=N*calcFactorial(--x);
return N;
}
Fig. 2. Changes of WSFactorial

discuss how the monitoring framework detected the modifica-
tion and how the test cases of the regression test were selected
to be executed again.

The first time the monitoring framework was executed if
creates the whole baseline required by our strategy: require-
ments (see Table I) , results (see Table IIT) and coverage (100%
for all criteria - see Table V).

TABLE III
TEST SET OF WSFACTORIAL
TC-ID | Input | Expected result | Path exercised | Status
TC-01 0 1 1-2 Passed
TC-02 1 1 1-3-5 Passed
TC-03 4 24 1-3-4-3-5 Passed

After creating the baseline information, the monitoring
framework started to execute the monitoring steps periodically
and detected all modifications presented in Figure 2. Table IV
summarizes the changes detected by the monitoring frame-
work.

28

TABLE IV
CHANGES DETECTED BY THE MONITORING FRAMEWORK IN

WSFACTORIAL
Main changes
Transition| Nodes Edges Uses T.C. selected
VI to V2 [+6, +71+(2,6), +(2,7)| +(x,1,(2,6)), +(x,1,(2,7)) | _ TC-01
V2 to V3 +(return, 1,4) TC-03
V3 to V4 -(4,3), +(4,5) TC-02, TC-03
V4 to V5 -(x,1,(3,4)), -(x,1,(3,5)) [TC-02, TC-03
+(N,1,(3,4)), +(N,1,(3,5))

When the service changed from VI to V2, the framework
detected that two new nodes and two new edges were created.
TC-01 is the only test case that covers node 2 (see Table
IIT), which was selected to be executed to check whether the
behavior of WSFactorial is the same after the modification.
TC-01 was executed and it passed. This indicates that the
behavior of WSFactorial had not changed, at least considering
the result of TC-01.

The coverage analysis step shows that the coverage reached
is different, as we show in Table V. The coverage is lower
because there are new nodes, edges and data which were not
exercised. Indeed, we can read the code and realize that the
service has changed because in this version the developer is
handling invalid entries (negative numbers), but the test cases
of the regression test cannot detect the modification because
none of them tests for invalid entries.

TABLE V
COVERAGE ANALYSIS OBTAINED FOR EACH VERSION OF W SFACTORIAL
Version | all-nodes | all-edges | all-uses
V1 100% 100% 100%
V2 85% 85% 92%
V3 85% 85% 93%
V4 85% 85% 92%
V5 85% 85% 92%

Since the monitoring framework detected a modification
in WSFactorial, the test requirements, the test results and
the coverage information regarding the second version of
WSFactorial (V2) has become the new baseline. The transition
from V2 to V3 has added a new use to node 4: the return of
the recursive call of (N=NxcalcFactorial (--x) ;). TC-
03 is the only test case affected by this modification because it
is the only test case whose path includes node 4. TC-03 failed
when it was executed pointing that the behavior of the third
version (V3) of WSFactorial has changed. For the purpose of
this study, we kept the monitoring framework running to detect
other changes, even with the failure identified.

When WSFactorial changed from V3 to V4, the monitoring
framework detected that an edge was missing and another
was created. Test cases TC-02 and TC-03 were executed and
passed. This means that the defect inserted in the previous
version was removed.

In the transition from V4 to V5, two uses were created
and two uses were removed. In V4, variable x is used in
the statement if (x>1), but in V5, variable N is used
instead: if (N>1). TC-02 and TC-03 were executed again

and passed. The coverage analysis for the three criteria is also
the same (Table V).

The monitoring framework implementing our monitoring
steps detected all changes made in WSFactorial. This answers
our research question A. The monitoring framework executed
1 out of 3 test cases in the first change, 1 out of 3 in the second,
2 out of 3 in the third and 2 out of 3 in the fourth. Thus it
have been executed 6 test cases instead of 12 (50%), which
answers the question B. Regarding question C, 3 out of the 6
selected test cases indicated the behavioral change (50%). We
also executed the test cases which were not selected and they
have not revealed any change in WSFactorial, indicating that
they should not be selected to be executed.

B. Exploratory study 2: monitoring a testable service exhaus-
tively changed by mutation in the context of a composition

Figure 3 presents the context in which this study was
performed. ShoppingService is an orchestration that uses
three testable services: CatalogService, ZipCodeService and
ShippingService. ShoppingService provides its clients with the
operation buy Items, which takes a list of products (IDs) and
a zip code as input parameters. The result of the operation is
the total price of the shop including the shipment tax to the
zip code informed. ShoppingService uses the three testable
services to: (i) get the price and the weight of each product of
the list (CatalogService); (ii) get the shipment address using
the zip code (ZipCodeService); and (iii) get the shipment price
(ShippingService).

S

H Catalog monitor

o [. e — Integrator

p Service

P set

| v

5 _| ZipCode |_ monitor Monitoring
Service Framework

S

E

R . .

v Shipping monitor

| .

c Service

E

A

f test

Fig. 3. Tllustration of ShoppingService

We used the tool MuJava ! to generate mutants of Ship-
pingService. We randomly selected two mutants of each
operator and each time a mutant was generated we published
a new version of ShippingService. The results of this study
is presented in Table VI. The first column is the name of
the mutant according to the operator used to generate it. The
second column indicates whether the framework detected the
modification (MOD). The third column is the number of test
cases selected to be executed again (#S-TC) and the fourth
column is the number of test cases that failed (#S-TC-F).
The fifth column indicates whether the other test cases (not

Thttp://www.cs.gmu.edu/ offutt/mujava/

29

selected) have failed (#NS-TC-F). To get this last information
we also run those test cases that were not selected to be
executed.

TABLE VI
RESULTS OF THE STUDY WITH MUTATION
Mutant [MOD#S-TC#S-TC-F|#NS-TC-F
M-AOISO05 | yes 4 2 0
M-AOIS26 | yes 8 8 0
M-AOIUO1| yes 8 8 0
M-AOIUO2| yes 8 8 0
M-ASRSO1| yes 2 2 0
M-ASRS06| yes 2 1 0
M-COIO1 | yes 7 6 0
M-COIO8 | yes 4 4 0
M-CORO02 | yes 7 0 0
M-COROS8 | yes 3 2 0
M-LOI0O2 | yes 4 1 0
M-LOIO6 | yes 4 2 0
M-ROR14 | yes 3 0 0
M-ROR23 | yes 8 8 0
Total 14 72 52 0

The results answer all of our research questions. Our
monitoring approach detected all changes (question A). The
number of test cases was minimized (question B). An approach
that executes the whole test set would execute at least 168 test
cases (considering only one execution) to detect changes in the
monitored service, while our approach have used 72 (43%).
The test cases selected to reveal changes are also suitable
(question C): 52 out of 72 test cases have failed indicating
a change in the behavior of the monitored service.

Another important result is that we executed the test cases
that were not selected and none of them revealed any change.
This also indicates the accuracy of our algorithm on selecting
test cases to be executed again. There were two situations in
which no test case failed. This happened because the mutants
M-CORO02 and M-ROR14 are equivalent mutants.

C. Exploratory Study 3: monitoring a testable service using
a more realistic setting

The advantage of using mutation is that mutation allows
changing the monitored service exhaustively. The disadvan-
tage, however, is that each mutant operator makes only one
change at each time. This is not very realistic considering
a real evolution of a service. In this study we performed a
more realistic evaluation. We asked three graduate students to
make changes in ShippingService. Each student created only
one new version of ShippingService based on the original
version. The first student created new business rules; the
second made a refactoring; and the third introduced a defect
in ShippingService.

The results of this case study also answered the three
research questions satisfactorily. All changes were identified
(question A). The number of test cases was minimized because
39% of the test cases were executed to detect the three changes
(question B). The test cases selected were suitable because
78% of the test cases selected to be executed again have failed
indicating changes in the behavior of the monitored service

(question C). We executed the test cases that were not selected
to be executed and none of them failed.

V. RELATED WORK

Many papers related to monitoring approaches were found
in the literature and most of the approaches focuses on
monitoring SLAs (Service Level Agreements) rather than
functional requirements. Many authors have proposed the idea
of continuous monitoring of web services at runtime to check
for violations of contracts, SLAs agreements and requirements
specifications [1]-[6], [8]-[10].

Liu et. al. [7] presented a regression testing approach for
BPEL business processes. They specified an impact analysis
rule to identify the test paths affected by changes of the
BPEL structures and to generated more test cases to detect
inconsistencies of the global behavior of the composition. In
their approach, however, it is also requested to identify changes
into the third party services used by the BPEL process to
identify chanbes in the whole structure.

Harrold et. al. [15] presented an approach to select test
cases to perform regression test using structural information
provided by component metadata. Lin et. al. [18] extended the
approach of Harrold et. al. [15] for services, but they state that
their approach cannot be directly applied to web services since
it is based in white-box testing. The main difference among
our approaches is that we use data-flow criteria (all-uses)
and coverage information to detect changes. Additionally,
we present a feasible solution proposed in previous work to
provide the structural information through testable services.

Bartolini et. al. [13] also presented an approach to monitor
testable services. Their approach, however, is based on the
execution of all test cases of the regression test set to detect
changes by observing only the structural coverage analysis.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented an approach to help monitoring
approaches to select suitable test cases to detect changes into
monitored services. The main purpose of the approach is to
detect structural changes in services using testing requirements
and to detect behavioral changes using test cases execution.
We use the structural change information to select only a
minimized number of test cases to be executed. We used the
concepts of control and data flow testing to detect changes into
the monitored services. Structural testing is usually performed
when the tester has access to the source code but in a SOA
environment it is possible due to the structural testing infor-
mation provided by testable services through testing interfaces
or through testing metadata of regular services.

We performed three exploratory studies to evaluate our
approach and the results were satisfactory. The monitoring
approach is suitable to detect minimal changes in services
and it is useful to reduce the number of test cases executed
during the regression test. The results of the studies cannot
be generalized because we used small examples and the
modifications of the monitored services may not be realistic
since they were not made in a real environment. As future

30

work we intend to improve the change detection mechanism
of our approach using other structural testing criteria and to
perform further evaluation using real world services.

VII. ACKNOWLEDGMENTS

The authors would like to thank the Brazilian funding
agencies: FAPESP (process 2008/03252-2), CAPES and CNPq
for their financial support.

REFERENCES
(1]

F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, “Run-time moni-
toring of instances and classes of web service compositions,” in ICWS
’06: Proc. of the IEEE Int. Conf. on Web Services. Washington, DC,
USA: IEEE C.S., 2006, pp. 63-71.

L. Baresi, C. Ghezzi, and S. Guinea, “Smart monitors for composed
services,” in ICSOC ’04: Proc. of the 2nd Int. Conf. on Service oriented
computing. New York, NY, USA: ACM, 2004, pp. 193-202.

A. Bertolino, A. Calabro, F. Lonetti, and A. Sabetta, “GLIMPSE:
a generic and flexible monitoring infrastructure,” in Proc. of the
13th European Workshop on Dependable Computing, ser. EWDC ’11.
New York, NY, USA: ACM, 2011, pp. 73-78. [Online]. Available:
http://doi.acm.org/10.1145/1978582.1978598

M. Bruno, G. Canfora, M. D. Penta, G. Esposito, and V. Mazza, “Using
test cases as contract to ensure service compliance across releases,” in
Service-Oriented Computing - ICSOC 2005, Third Int. Conf., 2005, pp.
87-100.

Y. Gan, M. Chechik, S. Nejati, J. Bennett, B. O’Farrell, and J. Water-
house, “Runtime monitoring of web service conversations,” in Proc. of
the 2007 Conf. of the Center for Advanced Studies on Collaborative
Research. New York, NY, USA: ACM, 2007, pp. 42-57.

S. Lamparter, S. Luckner, and S. Mutschler, “Formal specification of
web service contracts for automated contracting and monitoring,” in
HICSS °07: Proc. of the 40th Annual Hawaii Int. Conf. on System
Sciences. Washington, DC, USA: IEEE Computer Society, 2007, p. 63.
H. Liu, Z. Li, J. Zhu, and H. Tan, “Business process regression
testing,” in ICSOC ’07: Proc. of the 5th Int. Conf. on Service-Oriented
Computing. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 157-168.
S. Ho, W. M. Loucks, and A. Singh, “Monitoring the performance of
a web service,” in Proc. of the EEE Canadian Conf. on Electrical and
Computer Engineering, 1998, pp. 109-112.

S. Rosario, A. Benveniste, and C. Jard, “Monitoring probabilistic slas in
web service orchestrations,” in IM’09: Proc. of the 11th IFIP/IEEE Int.
Conf. on Symposium on Integrated Network Management. Piscataway,
NJ, USA: IEEE Press, 2009, pp. 474-481.

Q. Wang, J. Shao, F. Deng, Y. Liu, M. Li, J. Han, and H. Mei, “An online
monitoring approach for web service requirements,” IEEE Transactions
on Services Computing, vol. 2, pp. 338-351, 2009.

G. Canfora and M. Di Penta, Service Oriented Architecture Testing : A
Survey, ser. LNCS. Springer, 2009, no. 5413, pp. 78-105.

S. shan Hou, L. Zhang, T. Xie, and J. su Sun, “Quota-constrained test-
case prioritization for regression testing of service-centric systems,” in
Proc. IEEE Int. Conf. on Software Maintenance, 2008, pp. 257-266.
C. Bartolini, A. Bertolino, S. Elbaum, and E. Marchetti, “Bringing
white-box testing to service oriented architectures through a service
oriented approach,” J. Syst. Softw., vol. 84, pp. 655-668, April 2011.
[Online]. Available: http://dx.doi.org/10.1016/j.jss.2010.10.024

M. M. Eler, M. E. Delamaro, J. C. Maldonado, and P. C. Masiero,
“Built-in structural testing of web services,” in Proceedings of
the 2010 Brazilian Symp. on Soft. Engineering, ser. SBES ’10.
Washington, DC, USA: IEEE C.S., 2010, pp. 70-79. [Online].
Available: http://dx.doi.org/10.1109/SBES.2010.15

M. J. Harrold, A. Orso, D. Rosenblum, G. Rothermel, and M. L.
Soffa, “Using component metadata to support the regression testing of
component-based software,” Tech. Rep. GIT-CC-00-38, 2000.

B. Beizer, Software testing techniques (2nd ed.). New York, NY, USA:
Van Nostrand Reinhold Co., 1990.

G. J. Myers, The Art of Software Testing. New York: Wiley, 1979.

F. Lin, M. Ruth, and S. Tu, “Applying safe regression test
selection techniques to java web services,” in Proc. of the Int.
Conf. on Next Generation Web Services Practices. Washington,
DC, USA: IEEE C.S., 2006, pp. 133-142. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1262693.1263106

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]
(18]

