
Quantifying the Characteristics of Java Programs
that May Influence Symbolic Execution from a Test

Data Generation Perspective

Marcelo M. Eler
EACH/USP

São Paulo - SP - Brazil

E-mail: marceloeler@usp.br

Andre T. Endo
UTFPR

Cornélio Procópio - PR - Brazil

E-mail: andreendo@utfpr.edu.br

Vinicius H. S. Durelli
ICMC/USP

São Carlos - SP - Brazil

E-mail: durelli@icmc.usp.br

Abstract—Testing plays a key role in assessing the quality
of a software product. During testing, a program is run in
hopes of finding faults. As exhaustive testing is seldom possible,
specific testing criteria have been proposed to help testers to
devise test cases that cover the most relevant faulty scenarios.
Manually creating test cases that satisfy these criteria is time
consuming, error prone, and unwieldy. Symbolic execution has
been used as an effective way of automatically generating test
data that meets those criteria. Although this technique has been
used for over three decades, several challenges remain, such as
path explosion, precision of floating-point data, constraints with
complex expressions, and dependency of external libraries. In
this paper, we explore a sample of 100 open source Java projects
in order to analyze characteristics that are relevant to generate
test data using symbolic execution. The results provide valuable
insight into how researchers and practitioners can tailor symbolic
execution techniques and tools to better suit the needs of different
Java applications.

Keywords—Software testing; symbolic execution; test data gen-
eration;

I. INTRODUCTION

Testing plays a key role in assessing the quality of a
software product. During this activity, a program under test
is run against test cases with the goal of finding unrevealed
faults [1]. However, a well-known theoretical limitation of
testing is that it can only indicate the presence of faults, not
their absence. Broadly speaking, the problem of finding all
faults in a given program is undecidable. Therefore, testers
have been resorting to testing criteria, which help testers decide
what inputs are more likely to uncover different types of faults.

Structural testing is one of the most known testing tech-
nique. This technique proposes criteria to help testers judge
the thoroughness of a test set by exercising the structure of
the program under test. Two widely used structural testing
strategies are control- and data-flow. Manually generating test
data to satisfy these criteria, it turns out, is time consuming,
error prone, and unwieldy. Thus, several approaches have been
proposed to automate this process [2].

Symbolic execution and constraint solving have been used
for more than three decades as effective techniques for gen-
erating test data that achieve a high coverage of control-flow
criteria requirements [3], [4]. The general idea behind symbolic
execution is to represent the program elements as functions of

symbolic input values [4], [5]. Next, constraint solvers are used
to generate concrete input values (test data) that satisfy a set
of constraints related to execution paths.

Although symbolic execution has come a long way in the
last decades, many challenges remain. Path explosion is one of
the key challenges: symbolically executing a large number of
paths entails high computational overhead [6]. Moreover, long
paths tend to yield large constraint sequences and, though the
performance of constraint solvers has been improved in recent
years, large constraint sequences still hurt performance [4].
The constraint complexity is also an issue. The data types of
the constraint elements and arithmetic expressions may affect
the efficiency of the constraint solvers [7], [8]. Approaches also
have to deal with dependency. Several constraints are related
to method calls, whose values may not depend on symbolic
input values or object configurations. Approaches have used
different techniques for solving such type of constraints [6].
In addition, there are many exception-depended paths, that can
only be executed when a given exception is thrown. This issue
has not been covered in the literature yet, but it is a relevant
matter since it cannot be solved by recent approaches.

This paper describes an investigation that sheds light into
the nature and frequency of elements that affect symbolic exe-
cution from a test data generation perspective. Particularly, we
investigate the distribution of loops and inner loops; data types;
method calls; and constraints with exception declarations to
quantify factors that may influence path explosion, constraint
complexity, dependency and exception-depended paths issues,
respectively. Notice that, in this paper, we have not investigated
constraint complexity concerning mathematical expressions.

The overarching motivation for this research is to provide
a greater understanding of the characteristics of these elements
in real-world Java programs. We used a representative sample
of 100 open source projects [9]1 in our investigation. The
results of our investigation provide valuable insight into how
researchers and practitioners can evaluate the adequacy of
current approaches and tailor symbolic execution techniques
and tools to better suit the needs of different Java applications.

Although there are previous work on analyzing the char-
acteristics of programs that have an impact on symbolic

1Details of the SF100 corpus of classes used in this paper are available at
http://www.st.cs.uni-saarland.de/evosuite/SF100/.

2014 IEEE 38th Annual International Computers, Software and Applications Conference

0730-3157/14 $31.00 © 2014 IEEE

DOI 10.1109/COMPSAC.2014.26

181

execution [10], this paper presents the results of a large scale
empirical study in a different light. Moreover, we claim that
several studies should be performed to understand how is the
distribution of the characteristics that affect symbolic execution
from a test data generation perspective.

The remainder of this paper is organized as follows.
Section II introduces the background and discusses related
work. Section III illustrates the data extraction procedure we
carried out, along with an example. Section IV describes the
study setting. Section V brings the results along with analyzes
of the data. Section VI discusses some impacts in the area of
symbolic execution for software testing. Finally, Section VII
makes concluding remarks and sketches future work.

II. BACKGROUND AND RELATED WORK

During symbolic execution, a program is analyzed and
symbolic executed to determine what inputs cause the pro-
gram to run each of its possible paths. Such an analysis is
performed as follows. First, a constraint sequence is generated
for each execution path. A constraint sequence is a logical
expression connecting all constraints that should be satisfied to
execute a particular path. Constraints usually present four types
of elements: variables, method calls, constants, or exception
declarations. We consider exception declarations as constraint
elements because certain paths are run only when an exception
is thrown. Next, specific techniques may be executed to handle
constraint elements that are method calls and complex types.
The constraint sequences are thus sent to a constraint solver
that, if possible, finds solutions for each variable in the
constraint sequence. If the program is run using the values
produced by the solver, then the program will follow the same
path represented by the constraint sequence.

Since the seminal work of King in 1976 [5], symbolic
execution has been used to generate test data for control-
flow criteria [3], [4]. Although this research area has advanced
over the past years due to better constraint solvers and the
introduction of hybrid approaches (e.g., concolic testing [11]),
symbolic execution still poses several challenges when applied
to software testing [4], [6], [7], [12], such as (a) path explosion,
(b) complexity of constraints, (c) dependency, and (d) paths
triggered by exceptions.

a) Path explosion: Path explosion is one of the key
challenges in this field [6]. A workaround to this issue is to use
algorithms that generate paths that cover all branches by going
through loops only once. Yet, the number of constraints to be
solved in the resulting paths may be huge. This can overwhelm
the constraint solver and reduce the performance [4]. Further-
more, constraint sequences might be unsolvable because they
demand more than one loop iteration. In such case, methods
with several inner loops tend to generate a huge number of
paths until reaching a solvable constraint sequence.

b) Constraint complexity: the complexity of a con-
straint may be related to the data types of their elements or
to the complexity of the arithmetic expressions. Constraints
with primitive types (e.g., fixed-point data types) are better
handled by symbolic execution approaches than complex types
(e.g., arrays and objects) [7]. While the initial approaches
only dealt with primitive types (specially integers), we can
now find approaches for complex structures like arrays and

objects [10], [13]–[16]. Usually, complex types are reduced
and expressed as primitive types or even recursive structures.
As for primitive data types, constraint solvers handle integers
more properly than floating-point numbers depending on the
required precision [17]. Regarding the arithmetic expressions,
constraint solvers may not deal with nonlinear mathematical
constraints that are undecidable or very hard to solve as, for
instance, a seventh degree polynomial [8].

c) Dependency: constraint solvers are unable to tackle
constraints that depend on a method call’s response because
they cannot symbolically reason about method invocations. A
solution is to integrate the caller and the callee. This is possible
for calls to methods within the same class or for methods in
different classes of the same project, whose code is available
for integration. However, calls for external libraries and/or
native functions are harder to be handled in this fashion [6].
For Bytecode-based languages this may not be an issue since
it may be possible to process libraries and external projects at
Bytecode-level [10]. But it would not be possible, for example,
for remote calls such as web services invocations. A drawback
is that the methods integration may bring other challenges due
to high degrees of coupling or recursion.

d) Exception-depended paths: some paths can be exe-
cuted only when exceptions are thrown. Methods with excep-
tion handling code tend to have a large number of paths since
extra branches related to exception handling operations are
included. The branches can increase if the exception handling
code declares a Java finally statement, for example. As far
as we are concerned, this issue has not been covered in the
literature of symbolic execution for testing.

So far, few studies with real-world software have been con-
ducted to evaluate symbolic execution approaches to generate
test data. Cadar and Sen [8] provide a preliminary assessment
of the symbolic execution for software testing in academia,
research laboratories, and industry. They present characteristics
of different techniques and discuss how mature symbolic
execution tools can handle some of the aforementioned issues.
However, they did not investigate how frequently these issues
are in real-world programs. Pasareanu and Visser [7] also
present a survey on symbolic execution approaches without
evaluating the characteristics of real settings.

To our best knowledge, only Qu and Robinson [10] had
studied the frequency of symbolic execution limitations ap-
plied in large scale software. They investigated the frequency
and the density of floating-point numbers, pointers (objects),
native calls, symbolic offsets and bitwise operations over the
functions that present such limitations to symbolic execution.
There are three main differences between the study of Qu and
Robinson [10] and ours. First, Qu and Robinson [10] aimed to
study concolic testing tools and their limitations, counting the
elements statically. In this study, we only considered factors
(e.g., data types and method calls) when they impact on
the constraint sequence (as a consequence, in the test data
generation process). Second, we used a third-party benchmark
(SF100) with 100 Java projects with different sizes, while Qu
and Robinson [10] selected six large projects written in C and
Java (industrial and open-source). Third, we also analyze fac-
tors that may influence path explosion and exception-depended
paths. As for dependency issue, we split method calls into
three types: inner, inter and external, which may be different

182

depending on the target implementation. Moreover, concerning
constraint complexity, we investigated the distribution of other
data types besides floating-point numbers.

III. DATA EXTRACTION

This paper presents an analysis performed to quantify
characteristics that may influence the issues mentioned in
Section II. We defined a thorough set of metrics to be extracted
from the programs selected. The procedure adopted to perform
symbolic execution and extract metrics are illustrated using
the code snippet in Listing 1. The method siteForPoint
belongs to the open source project corina [18], which is
in the SF100 corpus. The data extraction can be divided into
five steps: A) Build control-flow graph; B) Generate paths; C)
Obtain constraint sequences; D) Perform symbolic execution;
and E) Calculate metrics.

Listing 1. Method siteForPoint (extracted from [18]).� �
1 p u b l i c S i t e s i t e F o r P o i n t (P r o j e c t i o n r , P o i n t p , i n t d i s t)
2 throws S i t e N o t F o u n d E x c e p t i o n {
3 i f (s i t e H a s h == n u l l) �
4 throw new S i t e N o t F o u n d E x c e p t i o n () ; �
5

6 Buf f e r ed Image buf =
7 new Buf fe r ed Image (1 , 1 , Buf f e r ed Image . TYPE INT ARGB PRE) ; �
8 Graphics2D g2 = buf . c r e a t e G r a p h i c s () ; �
9 s e t F o n t F o r L a b e l (g2 , view) ; �

10 i n t t e x t H e i g h t = g2 . g e t F o n t M e t r i c s () . g e t H e i g h t () ; �
11 P o i n t t = new P o i n t () ; �
12 I t e r a t o r i t e r = l a b e l s . g e t L o c a t i o n s () ; �
13 S i t e r e t u r n V a l u e = n u l l ; �
14

15 whi le (i t e r . hasNext ()) { �
16 L o c a t i o n l o c = (L o c a t i o n) i t e r . n e x t () ; �
17 r . p r o j e c t (loc , p2) ; �
18

19 i f (p2 . ge tZ () < 0) �
20 c o n t i n u e ; �
21

22 S i t e s = SiteDB . ge tS i t eDB () . g e t S i t e (l o c) ; �
23 S t r i n g t x t = s . ge tCode () ; �
24 i n t t e x t W i d t h = g2 . g e t F o n t M e t r i c s () . s t r i n g W i d t h (t x t) ; �
25 O f f s e t o = g e t O f f s e t (l o c) ; �
26 t . x = p2 . getX () +
27 (o . d i s t ∗ view . getZoom () ∗ Math . s i n (o . a n g l e)) ; �
28 t . y = p2 . getY () −
29 (o . d i s t ∗ view . getZoom () ∗ Math . cos (o . a n g l e)) ; �
30 i n t l e f t = t . x − (t e x t W i d t h / 2 + EPS) ; �
31 i n t wid th = t e x t W i d t h + 2 ∗ EPS ; �
32 i n t t o p = t . y − (t e x t H e i g h t / 2 + EPS / 4) ; �
33 i n t h e i g h t = t e x t H e i g h t + EPS / 2 ; �
34

35 i f (p . x >= l e f t � && p . x <= (l e f t + wid th) 	 &&
36 p . y >= t o p
 && p . y <= (t o p + h e i g h t)) �
37 r e t u r n V a l u e = s ; 11

38 } 12

39

40 i f (r e t u r n V a l u e != n u l l) 13

41 re turn r e t u r n V a l u e ; 14

42 e l s e throw new S i t e N o t F o u n d E x c e p t i o n () ; 15

43 }
�� �

A. Build Control-Flow Graph (CFG)

This step analyzes the method structure and builds a
control-flow graph (CFG) [19], [20]. CFGs are directed graphs
in which each node represents a block of instructions without
flow deviation (i.e., a basic block). Directed edges represent
transitions (unconditional branch or jump) in the control flow.
In this study, CFGs are generated based on Java Bytecode.

Figure 1 shows the CFG generated for siteForPoint,
which has 15 nodes and 20 edges. The numbers after each

instruction in Listing 1 indicate the node in CFG. Notice that
the CFG represents the if statement in line 35 using Nodes 7,
8, 9 and 10 because compound conditions like a>0 && b<5
are split into several if statements in Bytecode. The CFG
also stores pieces of information that are useful for symbolic
execution. For instance, nodes can be associated to variable
assignments and edges can be associated to constraints.

Fig. 1. CFG for method siteForPoint.

B. Generate Paths

The goal of this step is to identify a set of paths that covers
all edges in th method’s CFG. We reproduce a common goal
in symbolic execution for software testing, i.e., to generate
test data that cover all branches in the program under test (the
all-edges criterion). To do so, the paths are generated using
a spanning tree built through a breadth-first search. Figure 2
illustrates the tree constructed for the CFG in Figure 1. For
each leaf L of the spanning tree, a path P representing the
path from Node 1 (root) to L is generated.

Using this algorithm, method siteForPoint has nine
paths that need to be symbolically executed in order to cover
all-edges (the paths are labelled in the spanning tree in Fig-
ure 2). This strategy to path generation aims to produce shorter
paths and, as a consequence, shorter constraint sequences.
Notice that paths with loops take into account only one
iteration. A drawback of putting a limit on the number of loop
iterations is that some edges might end up uncovered because
some constraints might not be satisfied.

C. Obtain Constraint Sequences

In this step, a constraint sequence is generated for each
path identified in the previous step. Constraint sequences are
built by connecting all constraints along a given path with
operator AND. The constraint sequence generated for Path#9
is presented in Figure 3. Notice that the constraints in Figure 3
are related to Edges 1-3, 4-13, and 13-15.

183

Fig. 2. Spanning tree to cover all-edges of siteForPoint.
Constraint Sequence

siteHash != null
↘
AND
↘

iter.hasNext() != true
↘
AND
↘

returnValue == null

Fig. 3. Constraint sequence to cover Path#9.

D. Perform Symbolic Execution

We illustrate the symbolic execution using the constraints
shown in Figure 3. First, we select the variables to be expressed
as a function of other elements. Then, the target variable
is replaced by values to which it was assigned during the
execution of a specific path. For Path#9, for example, there is
no assignment to siteHash, then the first constraint remains
the same.

The variable iter is used in the constraint related to
Edge 4-13. So, the procedure checks whether assignments
to iter took place in the nodes preceding Node 4. In this
example, there is one assignment to iter only at Node 3
(see Line 12 of Listing 1). Hence, the variable is replaced
by its assigned value, i.e., labels.getLocations().
After the substitution of the variable for its previ-
ously assigned value, the constraint can be expressed
as follows: labels.getLocations().hasNext() !=
true. The same procedure is adopted to this new constraint,
starting from assignment of Line 11 of Node 3 back to the

previous assignments in the path. In this example, there are no
assignments to the variable labels.

The variable returnValue is also replaced by its as-
signed value: null (see Line 13 of Listing 1). The result of
symbolically executing Path#9 is shown in Figure 4.

Symbolic Execution
siteHash != null

↘
AND
↘

this.labels.getLocations().hasNext() != true
↘
AND
↘

null == null

Fig. 4. Symbolically executing the constraints for Path#9.

Notice that there are two elements to which a solu-
tion should be found: variable siteHash and the return
value of the method hasNext(). In this case, the re-
turn value of hasNext() depends on the return value of
getLocations() that, in turn, depends on the state of
variable labels. Constraint solvers can find solutions to
variables, but they cannot find direct solutions for method calls.
Constraint solvers are hampered by method calls because the
result of some method calls depends on the internal state of
one or many objects. In the example, solving the constraint
sequence in Figure 4 heavily relies on finding the internal state
of object labels.

E. Calculate metrics

Method siteForPoint is not too complex since its CFG
has only 15 nodes and 20 edges. It also has only one loop.
For each path of siteForPoint, we generated a constraint
sequence similar to the one for Path#9 (shown in Figure 4).
Then, we quantify the characteristics of each constraint se-
quence and extracted metrics related to its elements.

Table I shows the metrics we collected from the constraint
sequences generated for the nine paths of siteForPoint.
For each path, we show the constraint sequence size (CSS) 2;
the number of elements of the constraint sequence (CSE) 3;
the number of constants (CT); the number of variables (VAR);
the number of exception declarations (EX); and the number
of methods (MTH). Notice that we provide extra information
regarding method calls instead of only providing the total
number of calls. The total number of method calls are split
into inner calls (InnCs), inter calls (IntCs) and external calls
(ExtCs). It also brings the number of elements of each of these
types: integers (INT)4, floating-point numbers (FPN)5, nulls
(NL), strings (ST), objects (OT), and arrays (AT).

We illustrate the metric extraction using the constraint
sequence generated for Path#9 (Figure 4). That constraint
sequence has three constraints with eight elements. Four of
these elements are literals (three null and a true value), two
are variables, and two are method calls. Variables siteHash
and labels are both objects. Method getLocations() is

2the number of constraints logically connected with AND
3the sum of the number of variables, constants, method calls and exception

declarations
4it comprises the types: byte, char, short, int, long, and Boolean.
5it comprises the types: float and double.

184

TABLE I. METRICS EXTRACTED FROM PATHS OF SITEFORPOINT .

Method calls Types
Path CSS CSE CT VAR EX MTH InnC IntC ExtC INT FPN NL ST OT AT

1 1 2 1 1 0 0 0 0 0 0 0 1 0 1 0

2 3 8 4 2 0 2 0 1 1 2 0 3 0 3 0

3 3 8 4 2 0 2 0 1 1 2 0 3 0 3 0

4 5 15 6 4 0 5 0 3 2 4 2 3 0 6 0

5 6 47 10 14 0 23 2 11 10 11 7 3 0 26 0

6 7 94 18 26 0 50 4 23 23 24 12 3 0 55 0

7 8 121 23 35 0 63 6 27 30 32 17 3 0 69 0

8 9 157 32 45 0 80 8 31 41 46 22 3 0 86 0

9 9 161 31 46 0 84 8 34 42 46 22 2 0 91 0

Mean 5.7 68.1 14.3 19.4 0 34.3 3.1 14.6 16.7 18.6 9.1 2.7 0.0 37.8 0.0

an inter call and it returns an object type. Method hasNext()
is a library call, which returns a Boolean value.

IV. STUDY SETTING

This section describes the experimental setup we used
to analyze a sample of 100 open source Java projects. As
mentioned, we analyzed these Java projects in order to quantify
their characteristics that may lead to path explosion, constraint
complexity, dependency, and exception-depended paths. Our
research questions (RQs) reflect four recurrent issues in ap-
plying symbolic execution to software testing:

RQ1: What is the distribution of the factors that may cause
path explosion?

RQ2: What is the distribution of the factors that may have a
influence on constraints complexity?

RQ3: What is the distribution of the distinct types of depen-
dency?

RQ4: What is the distribution of exception-depended paths?

A. Sample Selection

Aiming at selecting an unbiased sample of Java software,
we based our study on the corpus of classes extracted from
many projects (SF100 benchmark) [9]. The SF100 benchmark
is made up of a collection of 100 open source Java projects
that differ considerably in size, complexity, and application
domains. Altogether, these 100 Java projects contain 8,784
classes and 136,156 methods. The largest project has 2,189
classes and the smallest has only one class.6

Our investigation considered only methods that have at
least one constraint to be solved. Thus, although the SF100
benchmark comprises 136,156 methods, only 34,493 methods
were analyzed. Figure 5 shows the distribution of the SF100
methods and it indicates that around 25% of the methods were
the focus of our investigation. We removed from the initial
sample 6,524 abstract methods and 95,139 methods with no
branches.

We performed a further investigation to understand why
approximately 70% of the methods have no constraint. We
found that 43% of these methods are getters and setters and
approximately 20% are constructors. This information would
seem to suggest that it is common to find methods with no
constraint in most projects since classes tend to have at least
one get/set pair for each attribute and at least one constructor.

6All the experimental data is available at https://sites.google.com/site/
andreendo/home/compsac2014.

���������������
���	
����
��������

�������������

�������������������
�����������

��	
���
� �����
����������

Fig. 5. Distribution of methods in the SF100 benchmark.

B. Supporting Tool

We developed a tool called CP4SE (Constraint Profiling
For Symbolic Execution) to perform the static analysis and
collect the metrics. CP4SE was implemented in Java and
performs all analysis based on Java Bytecode. It receives a
JAR (Java ARchive) file containing Java classes as input and
executes the data extraction procedure presented in Section III
for each method of each class. The static analysis performed
by our tool is based on either each path of each method of a
given class (as shown in rows 1 to 9 of Table I) or all paths
of each method are taken into account and the mean value is
reported (as shown in the last row of Table I). In this paper,
we used the mean value of considering all paths of a method
in our investigation.

C. Threats to Validity

We identified some threats to the validity of our study. The
metric collected for each method is the mean of the metrics
of all paths generated. Our procedure to generate paths for a
method follows a breadth-first algorithm that aims to cover all
branches of a CFG. The algorithm considers only one loop
iteration and many paths may generate unsolvable constraints
leaving branches uncovered. Some branches can be covered
only if two or more loop iterations were considered. As
statically defining which constraint sequences are unsolvable
(they require longer paths) is an open issue, we decided to
perform our analysis based on the paths generated by this
algorithm.

In this study, we decided to perform symbolic execution by
replacing constraint elements based only on direct assignments.
We do not consider, for example, situations in which constraint
elements are changed when used as parameters or even when
the element is an object and invokes a method that changes its
state.

We tried to remove any bias related to the selection of
samples by adopting a third-party benchmark. As a drawback,
we brought some threats reported by [9]. For instance, SF100
was built based on SourceForge projects and the results might
not be equal if a different repository is considered. Moreover,
the results are based on open source projects and cannot be
generalized to industrial settings.

CP4SE performs all analyses based on the Java Bytecode.
The Java Bytecode usually has more instructions because it has
to handle implicit declarations and structures, such as casting
and string handling. Moreover, the Java Bytecode works as a
stack machine. Consequently, several instructions have to be

185

split into others, e.g., an if instruction with several constraints
connected by logical operators (AND, OR).

V. ANALYSIS OF RESULTS

As mentioned, the results presented in this section are
based on methods that have at least one constraint. We discuss
the results obtained for each of the RQs as follows.

A. RQ1:What is the distribution of the factors that may cause
path explosion?

We looked at two factors that may cause path explosion:
(i) the number loops and (ii) the depth of inner loops. Table II
shows the distribution of the number of loops. As highlighted
in Table II, 75.15% (25,915) of the investigated methods have
no loops, which means that they have no potential for path
explosion, whereas 24.85% (8,578) have at least one loop
structure. As shown in Table II, methods containing one loop
are far more common (18.10%) than methods with two or
more loops (6.75%). The method containing more loops had
48 loop occurrences and belongs to the APBSmem project.7

It is worth mentioning that one loop is enough to lead to
path explosion, but the presence of more than one loop can
aggravate the problem.

TABLE II. DISTRIBUTION OF METHODS WITH LOOPS.

Methods Loops % of analyzed methods
25915 0 75.15%

8578 >=1 24.85%

6238 1 18.10%

1431 2 4.15%

433 3 1.25%

180 4 0.50%

296 5 to 48 0.85%

Although the number of loops may indicate methods with
potential for path explosion, the number of inner loops is also
an important matter. Methods with several inner loops tend to
present more complex logic and several numbers of execution
paths, even considering only one loop iteration. Therefore,
we also looked at the distribution of inner loops as shown
in Table III. Of the 8,578 methods that have at least one loop,
6,369 (74%) have no inner loop, whereas 2,209 have at least
one inner loop structure (26%).

TABLE III. DISTRIBUTION OF METHODS WITH INNER LOOPS.

Methods Inner loops % of methods with loops % of analyzed methods
6369 0 74.00% 18.50%

2209 >=1 26.00% 6.5%

1450 1 17.00% 4.25%

408 2 4.80% 1.20%

152 3 1.80% 0.45%

75 4 0.90% 0.25%

124 5 to 35 1.50% 0.35%

B. RQ2:What is the distribution of the factors that may have
an influence on constraints complexity?

We analyzed the distribution of two factors that may
influence the complexity of constraints: (i) the size and (ii)
the data types in constraint sequences. A constraint sequence
with many constraints typically takes longer to solve. From
a test generation perspective, this may lead to bottlenecks

7For more details regarding each Java project see http://www.evosuite.org/
sf100/ .

when applying symbolic execution to generate test suites [4].
Therefore, we examined the size of constraint sequences.

Table IV gives an overview of the distribution of constraint
sequence sizes. The mean value in Table IV indicates that most
constraint sequences have around two constraints. However,
since the data has outliers, the trimmed mean and median
values in Table IV are more useful measures of central
tendency than the mean. Moreover, because of the outliers, the
median absolute deviation (MAD) is a more robust measure
of statistical dispersion than the standard deviation (SD).

Another factor that influences the complexity of constraint
sequences is the type of elements. Figure 6 provides an
overview of the number of methods that have at least one
element of the following types: integers (i.e., fixed-point data
types), floating-point numbers, strings, arrays, and objects.
From analyzing Figure 6, it is clear that integers and objects
are the most frequent types. Most constraint sequences (66%)
have constraints that include at least one object. Moreover,
61% of the analyzed methods have integers in their constraint
sequences. The frequency in which floating-point numbers
appear in constraint sequences is surprisingly low: 1.4%. As
expected, the number of arrays is also low given that most
programmers prefer the Java Collections Framework to arrays.

TABLE IV. CONSTRAINT SIZE INFORMATION.

Constraint Size Overview
Mean 2.19

Trimmed 1.68

SD 2.29

Median 1.50

MAD 0.74

Min 1.00

Max 62.04

21095

472

6857

1383

22681

0

5000

10000

15000

20000

Integers Floats Strings Arrays Objects
Types

A
m

ou
nt

Fig. 6. Overview of all analyzed types.

Finding solutions to integer elements is easier than to
floating-point elements due to precision requirements. Dealing
with complex types (arrays and objects) is even harder for con-
straint solvers. To deal with complex types, many constraint-
solving optimizations reduce complex types into simple types.
Also, to speed up constraint solving, strings are often regarded
as primitive8 types. There are also constraint solvers that
handle strings as a type of its own. In this paper, we consider
strings an independent type apart from primitive and object
types.

8The Java programming language has eight primitive data types: boolean,
byte, char, short, int, long, float, double

186

Based on these classifications, we carried out different
analysis for each of the types presented in Figure 6. We
calculated the relative frequency of each type in Figure 6.
In this context, the relative frequency is defined as the ratio
of the number of appearances of a given type to the total
number of observations. That is, in the following histograms,
the height of each rectangle equals the relative frequency of the
corresponding type divided by the total number of elements.
To improve the understanding of the histograms, we removed
the methods that do not have any element of the analyzed type.

Figure 7 shows the histogram of the distribution of inte-
ger types. In our analysis, the following primitive types are
considered integers: boolean, byte, short, char, int,
and long. 13,398 (which corresponds to 39%) methods were
removed from this analysis since they do not have any con-
straint containing integers types. As shown in Figure 7, 25%
to 75% of the constraint elements in the methods considered
are integers. Moreover, around 2,300 methods have constraint
sequences that are made up of only integer types.

0

500

1000

1500

2000

0.00 0.25 0.50 0.75 1.00
Integers

M
et

ho
ds

Fig. 7. Ratio of integers in constraint sequences.

Figure 8 shows the histogram of the distribution of floating
point data types (i.e., float and double). We removed
98.6% (34,021) of all analyzed methods of the histogram since
they do not have any constraint with these types. Methods with
floating-point numbers represent only 1.4%. As indicated in
Figure 8, for most methods considered, less than 30% of their
constraint elements are floating-point.

0

20

40

60

0.0 0.3 0.6 0.9
Floating-point Types

M
et

ho
ds

Fig. 8. Ratio of floating-point types in constraint sequences.

Figure 9 shows the histogram for the distribution of the
string type. Our analysis shows that 6,857 methods have strings
in their constraint sequences, which corresponds to 20% of the
investigated methods. As shown in Figure 9, strings represent
less than 40% of the constraint elements. According to our
results, there is no method in which all constraint elements
are strings.

Regarding complex types, we performed two different
analyses: one for arrays and one for objects. Figure 10 shows
the histogram for the distribution of array data types. Only
4% (1,383) of the analyzed methods appear in this histogram
because 96% (33,110) do not have any array. Considering these
methods, arrays represent less than 40% of their constraint
elements most of the times. Methods with most array elements
have up to 50% of their constraint sequence by array data
types.

0

200

400

600

0.0 0.2 0.4 0.6 0.8
Strings

M
et

ho
ds

Fig. 9. Ratio of strings in constraint sequences.

0

25

50

75

100

0.0 0.2 0.4
Arrays

M
et

ho
ds

Fig. 10. Ratio of array data types in constraint sequences.

As expected, objects are the most predominant data type in
constraints: 66% of the analyzed methods have objects in their
constraint sequences. This is a direct effect of the programming
language in which the chosen projects were written (i.e.,
Java). Figure 11 shows the histogram of the distribution of
objects. 34% (11,812) of the analyzed methods were removed
because they do not have constraints with objects. According
to our results, 45% of the elements in constraint sequences are
objects, on average.

187

C. RQ3:What is the distribution of the distinct types of de-
pendency (inner, inter, and external)?

There are 19,273 methods whose constraint sequences
depend on a method call, which represents about 56% of
the 34,493 methods in the SF100 benchmark. This sort of
dependency may be expressed as inner, inter, or external calls.
Methods may depend on all of these types of calls at the same
time. For each type of method call analyzed, we computed
the amount of method calls and divided it by the number of
constraint elements. Then, we use histogram to highlight the
distribution of these methods, removing methods that have no
method calls in their bodies.

0

1000

2000

3000

4000

0.0 0.3 0.6 0.9
Objects

M
et

ho
ds

Fig. 11. Ratio of objects in constraint sequences.

Figure 12 shows the distribution of methods that have inner
calls in their bodies. 12% (4,191) of the analyzed methods
have inner calls, while 88% (30,302) do not. Considering these
methods, in most cases, inner calls represent less than 40%
of their constraint elements. Considering constraint sequences
that have inner calls, on average (mean), 19% of the elements
in these constraint sequences are inner calls.

0

250

500

750

1000

0.0 0.3 0.6 0.9
Inner Calls

M
et

ho
ds

Fig. 12. Ratio of inner calls in constraint sequences.

Figure 13 shows the distribution of inter calls. 8,597 (25%)
of all analyzed methods have inter calls. Considering these
methods, inter calls usually represent less than 40% of their
constraint elements.

Figure 14 shows the distribution of external dependencies.
41% (14,126) of the analyzed methods have constraints with
external dependency, while 59% (20,367) do not. Regarding

these methods, external calls generally represent up to 50% of
their constraint elements.

D. RQ4:What is the distribution of exception-depended paths?

There are 12,545 methods with exceptions-depended paths,
i.e., paths that are executed only when specific exceptions
are thrown. It represents 36% of the analyzed methods. Fig-
ure 15 shows the distribution of exception-depended paths.
To improve the understanding of the histogram, we removed
methods that do not have exception-depended paths (it rep-
resents about 64% of the analyzed methods). Notice that,
out of the 12,545 methods with exception-depended paths,
about 8,000 methods have exclusively exception declarations
elements. This means that 23% of all analyzed methods have
try-catch-finally instructions but with no conditional
statements (e.g., if, switch, and while).

0

250

500

750

1000

1250

0.0 0.2 0.4 0.6 0.8
Inter Calls

M
et

ho
ds

Fig. 13. Ratio of inter calls in constraint sequences.

0

500

1000

1500

0.00 0.25 0.50 0.75
External Calls

M
et

ho
ds

Fig. 14. Ratio of external calls in constraint sequences.

It is important to highlight that symbolic execution consid-
ering exception-depended paths has not been further explored
before, then we based our study in some assumptions. Suppose
that node C represents instructions to handle an exception E
that can be thrown on node N. If node N is executed without an
exception thrown, it goes to node R in the CFG. The constraint
required to go from node N to C is an implicit if (E is
thrown) statement. In this study, we did not consider that
there is a constraint if (E is not thrown) required to
go from node N to R, since this case does not impact on
exception-depended paths.

188

VI. DISCUSSION

In this section, we provide some discussion related to path
explosion, constraint complexity, dependency, and exception-
depended paths based on the analysis we performed for the
SF100 projects.

Path explosion: from analyzing Tables II and III, we can
see that methods with loops are not very common, and methods
containing more than one loop are even less common. So,
as far as RQ1 is concerned, we can argue that loops and
inner loops do not add much to the complexity of symbolic
execution, at least regarding the SF100 benchmark analysis.

0

2000

4000

6000

8000

0.0 0.3 0.6 0.9
Exceptions

M
et

ho
ds

Fig. 15. Ratio of exception-depended paths.

Methods that have at least one inner loop represent only
6.4% of all analyzed methods (34,493) and 1.6% of all
methods (135,156) of SF100. These according to these results,
only 25% of the analyzed methods have potential for path
explosion, but, in fact, only 6.4% have at least one inner
loop and have higher potential to cause path explosion. As
mentioned, the number of methods with more than one inner
loop is even smaller: 2.25% of all analyzed methods.

Path explosion is one of the key challenges of symbolic
execution. It can dominate runtime and hamper the test data
generation process. For instance, we found methods with up to
35 inner loops. During test data generation using symbolic ex-
ecution, this method would hog system resources, jeopardizing
the entire process. However, we can conclude that generally
symbolic execution lends itself to generating test data (from
the path explosion point of view). An interesting strategy
is to generate test data for 93.6% of the analyzed methods
using symbolic execution, and employ different techniques for
methods that may lead to path explosion.

It is worth emphasizing that our findings are based on a
symbolic execution process that does not consider the integra-
tion among methods of the same class or project. This can
potentially hide inner loops that arise from these integrations.

Constraint Complexity: in the light of the results pre-
sented in Section V-B, the answer to RQ2 is that integers and
objects are the two data types that have the most influence on
the complexity of constraint sequences, while the other data
types are not too frequent.

Due to advances in the constraint solving technology,
constraint solvers can easily handle most issues related to

fixed-point numbers. Nevertheless, there are only around 2,300
methods whose constraint sequences are 100% composed of
integer type elements. This information provides evidence that
symbolic execution approaches that deal only with integers can
automatically generate test data only for 6.6% of the analyzed
methods.

According to our analysis, floating-point data types are not
a key issue to symbolic execution approaches since the number
of methods whose constraints have floating-point elements is
too low. This may not be hold for domains in which floating-
point numbers are predominant.

The low number of arrays may be explained by the
widespread use of Java collections, which are considered
object types in this investigation. Array types should not
limit symbolic execution approaches since most of them have
handled this type at both symbolic execution and constraint
solver level. Apart from those reasons, there are few methods
using arrays at least as constraint elements.

Object types still pose several challenges to constraint
solvers and constraint solving is still one of the major bot-
tlenecks in symbolic execution. The predominance of objects
over the constraint sequences of the SF100 benchmark shows
that researchers should focus on optimizing constraint solvers
to deal with complex types (e.g., objects), since handling
objects will increase the applicability of symbolic execution
approaches.

Dependency: as far as RQ3 is concerned, results presented
in Section V-C show that 73% (14,126) out of the 19,273 meth-
ods with dependency are external calls. Therefore, techniques
to integrate the caller with the called methods to eliminate
dependency may work only for 27% of the methods with some
dependency. This suggests that approaches to handle calls to
other libraries are strongly recommended if intended to be
used in real-world software projects. External calls may not
represent a bigger issue when the external library or project is
available for integration at bytecode level, for example [10].

Exception-Depended Paths: the answer to RQ4 (Section
V-D) indicates that exception-depended paths are an important
issue to symbolic execution since one third of the methods
has to deal with exceptions. 25% of the analyzed methods
presented only exception elements. We claim that approaches
that want to generate test data to real-world software using
symbolic execution should be able to handle exception-related
constraints. Unfortunately, there is a lack of approaches that
can cope with this issue.

Comparison with related work: the results of this in-
vestigation are similar to the results obtained by Qu and
Robinson [10]. As for dependency, they found that 20% of the
analyzed methods have native calls, but they did not explore
inner, inter, and other types of external calls. Concerning
constraint complexity, they found that floating-point numbers
are concentrated in a small number of methods and objects are
far more predominant.

VII. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this paper, we described a study with real-world projects
aimed at quantifying the factors that affect symbolic exe-
cution for testing. We used a corpus of 100 Java projects

189

from which several metrics were extracted. Several results
have been obtained for known issues, namely, path explosion,
complexity of constraint sequences, dependency of method
calls, and exception-depended paths. These results provide
valuable insight into how current approaches can be evaluated
and new techniques can be tailored to better suit the needs
of different real-world applications. The provided analysis is
also extremely useful in driving future efforts to automate test
data generation using not only symbolic execution, but other
techniques (e.g. concolic testing and search-based strategies).

Nevertheless, further investigation is required to obtain
more knowledge regarding the limitations of symbolic execu-
tion applied to test data generation. As future work, we intend
to analyze other 100 different Java projects to compare the
results with the SF100 analysis. Also, we intend to extend our
tool to perform the integration of inner and inter calls in many
degrees. Integration between methods may affect constraint
size and loop or inner loop counting. Moreover, we intend
to perform the same analysis described in this paper, but by
grouping projects according to their domain.

ACKNOWLEDGMENTS

The authors would like to thank the financial support
provided by CAPES (grant number BEX 1714/14-7), FAPESP
(process 2014/07969-0), and CNPq.

REFERENCES

[1] G. J. Myers, C. Sandler, T. Badgett, and T. M. Thomas, The Art of
Software Testing. John Wiley & Sons, Inc., Hoboken, New Jersey,
2004.

[2] S. Galler and B. Aichernig, “Survey on Test Data Generation Tools,”
International Journal on Software Tools for Technology Transfer, pp.
1–25, 2013.

[3] C. Ramamoorthy, S.-B. F. Ho, and W. Chen, “On the automated genera-
tion of program test data,” IEEE Transactions on Software Engineering,
vol. SE-2, no. 4, pp. 293–300, 1976.

[4] C. Cadar and K. Sen, “Symbolic execution for software testing: three
decades later,” Communications of the ACM, vol. 56, no. 2, pp. 82–90,
2013.

[5] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, Jul. 1976.

[6] S. Anand, E. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,
M. Harman, M. J. Harrold, and P. McMinn, “An orchestrated survey
on automated software test case generation,” Journal of Systems and
Software, vol. 86, no. 8, pp. 1978–2001, 2013.

[7] C. S. Pasareanu and W. Visser, “A survey of new trends in symbolic
execution for software testing and analysis,” International Journal of
Software Tools and Technology Transfer, vol. 11, no. 4, pp. 339–353,
2009.

[8] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen, N. Till-
mann, and W. Visser, “Symbolic execution for software testing in prac-
tice: Preliminary assessment,” in Proceedings of the 33rd International
Conference on Software Engineering. ACM, 2011, pp. 1066–1071.

[9] G. Fraser and A. Arcuri, “Sound Empirical Evidence in Software
Testing,” in Proceedings of the 2012 International Conference on
Software Engineering, 2012, pp. 178–188.

[10] X. Qu and B. Robinson, “A Case Study of Concolic Testing Tools and
their Limitations,” in International Symposium on Empirical Software
Engineering and Measurement, 2011, pp. 117–126.

[11] K. Sen, “Concolic testing,” in Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineer-
ing, New York, NY, USA, 2007, pp. 571–572.

[12] P. Godefroid, “Test Generation Using Symbolic Execution,” in IARCS
Annual Conference on Foundations of Software Technology and The-
oretical Computer Science, ser. Leibniz International Proceedings in
Informatics, vol. 18, 2012, pp. 24–33.

[13] S. Khurshid, C. S. Păsăreanu, and W. Visser, “Generalized symbolic
execution for model checking and testing,” in Proceedings of the 9th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, 2003, pp. 553–568.

[14] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid, “Test input generation
with java pathfinder,” in Proceedings of the 2004 ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2004, pp.
97–107.

[15] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed automated
random testing,” SIGPLAN Notes, vol. 40, no. 6, pp. 213–223, 2005.

[16] B. Elkarablieh, P. Godefroid, and M. Y. Levin, “Precise pointer rea-
soning for dynamic test generation,” in Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis, 2009, pp.
129–140.

[17] P. Godefroid and J. Kinder, “Proving memory safety of floating-point
computations by combining static and dynamic program analysis,” in
Proceedings of the 19th International Symposium on Software Testing
and Analysis, 2010, pp. 1–12.

[18] SourceForge, “Corina: The cornell tree-ring analysis system,” [February
2014]. [Online]. Available: http://sourceforge.net/projects/corina/

[19] S. Rapps and E. J. Weyuker, “Selecting software test data using data
flow information,” IEEE Transactions on Software Engineering, vol. 11,
no. 4, pp. 367–375, 1985.

[20] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software Unit Test Coverage
and Adequacy,” ACM Computing Surveys, vol. 29, no. 4, pp. 366–427,
1997.

190

