2009 33rd Annual IEEE Software Engineering Workshop

JaBUTiService: A Web Service for Structural
Testing of Java Programs

Marcelo Medeiros Eler, Andre Takeshi Endo, Paulo Cesar Masiero, Marcio Eduardo Delamaro, Jose Carlos Maldonado
Instituto de Ciencias Matematicas e de Computacao — Universidade de Sao Paulo
P.O. 668 — Sao Carlos — Brasil — 13560-970
Email:{mareler, aendo, masiero, delamaro,jcmaldon} @icmc.usp.br

Auri Marcelo Rizzo Vincenzi
Universidade Federal de Goias
Caixa-Postal: 131 - CEP: 74001-970 - Goiania, GO - Brasil
Email: auri@inf.ufg.br

Abstract—Web services are an emerging Service-Oriented
Architecture technology to integrate applications using open
standards based on XML. Software Engineering tools integration
is a promising area since companies adopt different software
processes and need different tools on each activity. Software
engineers could take advantage of software engineering tools
available as web services and create their own workflow for
integrating the required tools. In this paper, we propose the
development of testing tools designed as web services and discuss
the pros and cons of this idea. We developed a web service for
structural testing of Java programs called JaBUTiService, which
is based on the stand-alone tool JaBUTi. We also present an
usage example of this service with the support of a desktop
front-end and pre prepared scripts. A set of 62 classes of the
library Apache-Commons-BeanUtils was used for this test and
the results are discussed.

I. INTRODUCTION

Software testing is an important activity in the process of
software quality assurance and consists of running a program
under test with the aim of revealing faults [1]. Programs are
tested against test cases that are created according to specific
testing techniques and criteria. Manual generation of test cases
is expensive and error prone. Thus, various testing tools have
been developed to support this activity. Generally, each testing
tool implements mechanisms to test software according to a
specific technique. The combination of techniques and criteria
usually requires that the tester uses different tools, each one
with its own local installation, platform and programming
language, and also with specific input and output data defi-
nitions. These characteristics hamper integration of tools and
the integrated and automatic use of the obtained results. This
leads to the need of combining manually the results or using
a tool developed specifically for this purpose. According to
Wicks and Dewar [2], software engineering tool integration
remains an open topic and more work is necessary to improve
it.

Web services are an emerging Service Oriented Architec-

1550-6215/09 $26.00 © 2009 IEEE
DOI 10.1109/SEW.2009.10

69

Marcos Lordello Chaim, Delano Medeiros Beder
Escola de Artes, Ciencias e Humanidades
Universidade de Sao Paulo
Avenida Arlindo Bettio, 1000 Ermelino Matarazzo
03828-000 - Sao Paulo, SP - Brasil
Email: {chaim,dbeder}@usp.br

ture (SOA) technology to integrate applications using open
standards based on XML. SOA is an architectural style
that uses services as the basic constructs to support the
development of rapid, low-cost, loosely-coupled and easily
integrated applications even in heterogeneous environments
[3]. We claim that testing tools, as well as other software
engineering tools, can be provided as web services suitable
for integrating heterogeneous systems. In this context, Ghezzi
and Gall [4] proposed a service platform, devising software
analysis tools as web services. Following a similar approach,
the QualiPSo (Quality Platform for Open Source Software)
project has developed a new concept of forge based on SOA
[5]. All functionalities and tools in the forge will be provided
and integrated through web services.

Our research group has been working with software testing
for many years and several tools for software testing have
been developed in this period. One of these tools is JaBUTi
(Java Bytecode Understanding and Testing) [6]. Initially it
was developed as a stand-alone to support structural unit and
integration testing of Java and Aspect] programs [7], [8].

In this paper, we propose the idea of testing tools designed
as web services, discuss its pros and cons and present as a
proof of concept a web service to support structural testing of
Java programs called JaBUTiService, which has been devel-
oped on top of the stand-alone tool JaBUTi. Our claim is that
using widespread availability of testing tools as services with
standardized formats of inputs and outputs of their operations,
the integration among different tools and the combination of
their results would be facilitated.

This paper is organized as follows. Section II presents a
discussion about sharing tools as web services. Section III
shows a brief overview of software testing, describing the
JaBUTi tool. Section IV presents our testing service called
JaBUTiService. Section V presents a usage scenario of our
service, including a desktop front-end application and pre
prepared scripts. Section VI discusses related work and Section

IEEE
computer
® psouety

VII presents the conclusion and future work.

II. TESTING TOOLS AS WEB SERVICES

Providing testing tools as web services could bring many
advantages as the ones presented as follows. Possible disad-
vantages and difficulties are discussed in the conclusion.

Ease of use: testing tools available as services could be
integrated in many development environments prepared to ac-
cess other web services, thus being independent of platforms,
languages, operating systems, etc. Services can be accessed
through desktop applications, web applications, other services,
service composition and orchestration, etc. Section V shows a
possible way to use a testing service.

Availability: developers can use the testing web service
without spending time with installation and deployment. More-
over, the results of testing and the reached coverage may be
made available for analysis tools to keep history, tracking
faults, extracting metrics, etc.

Version control: testing tools handle complex data structures
and could be very dependent of technology. These issues could
cause the release of new versions frequently. However, since
the service interface does not change frequently, the cost of
managing version control will be lower. That is, the use of
traditional tools requires to reinstall the testing tool any time
an update is released. This differs from web services because
updates can be released only in the service server and it is
likely that client tools will not perceive the change.

Integration: each company or project has its own devel-
opment process and the software engineering tools are used
during different stages. In this context, it is essential to adapt
the tools for each scenario. If software engineering tools were
available as web services, software engineers could design
workflows to integrate different tools from different providers.
This scenario could avoid dependency from a dominant gen-
eral purpose tool and its vendor [16]. If we consider the
testing activity, testers can build workflows and scripts to
run a test set in a series of tools to obtain the test results
and analyze the criteria coverage for different techniques. The
combination of different techniques for testing software is
highly recommended [1].

Orchestration and choreography of software engineering
services: we envisage that in the future, there will be environ-
ments with many software engineering services registered at
specific brokers, and software engineers will be able to select
and compose services to assemble and customize their soft-
ware development environment. For example, testing services
would be integrated with other services that provide features
such as extraction of metrics, logging and tracking of faults.

Comparison: conduction of experiments to compare two or
more tools with the same functionality would be facilitated.
Furthermore, software engineers could easily try several tools
and select those that best fit each specific task.

The simple availability of testing tools as services will
offer the same benefits brought by the SOA. The benefit of
easy integration among services also requires that suppliers
agree with the standardization of the service’s operation and

70

its parameters (input and output data). Some efforts have
been carried out to use taxonomies and ontologies for the
integration of tools within a certain field and with tools from
other software engineering fields [4].

A platform for sharing testing services is being developed
by our research group. To classify the different testing tools to
be registered into the service broker, a testing ontology is being
used, called OntoTest [10]. We are also studying the feasibility
of extending the ontology to standardize the interfaces of
the registered testing tools. The results of this extended and
standardized ontology could be queried for generating reports
using languages like SPARQL [11].

A web service is useful if it can be reused in different
contexts. Figure 1 and Figure 2 show two possible ways of
using it. In Figure 1, a tester can use JaBUTiService directly
for testing a particular project. The tester can access the
JaBUTiService using any device that is able to access a web
service and create scripts in XML specific for the task at hand.

Scripts/
-+—— |Applica <Q JaBUTiService
tions
Tester
Fig. 1. The tester can use JaBUTiService for a particular project.

Figure 2 shows the usage of JaBUTiService in the context of
a testing workflow. Suppose that a tester designed a test set and
wants to evaluate it using different techniques. The tester sets
up a testing workflow and use the JaBUTiService to perform
structural testing. If other testing tools were available as web
services, these services could be orchestrated or composed
using for example a BPEL process.

Tesier /(O JaBUTiService
Structural
/ Testing
Other
State-b_ased Funcional /7 Testing
Testing /<#——_Testing \Q Services
Testing workflow

Fig. 2. JaBUTiService is used in a testing workflow.

III. SOFTWARE TESTING AND JABUTI

Software development processes involve many activities,
techniques, methods, tools and people. Many types of faults
can be introduced in the software by each activity. Quality as-
surance activities have been introduced along the development

process to solve this problem. Among these activities, software
testing is one of the most used, providing reliability evidences
in complement to other activities like review, validation and
verification techniques [12].

Testing is the process of executing a program with the intent
of finding faults [1]. It is not possible to test software against
all possible inputs because they generally tend to be infinite.
Several techniques and criteria have been developed to better
create meaningful test cases. A testing criterion defines which
properties or requirements need to be tested for evaluating the
quality of the tests [13]. Four techniques stand out on testing
researches: functional (or black-box) testing, structural (or
white-box) testing, state-based testing and fault-based testing.

Structural testing is a technique in which the tester build test
cases by means of the program internal logic [1]. Usually, most
of the criteria from this technique use a program representation
called control flow graph or program graph. The criteria
that only consider characteristics of the execution control are
named control flow criteria. The most known criteria of this
class are all-nodes, all-edges, and all-paths [13]. Moreover,
there are data flow criteria that use information about the
program data flow to derive test requirements. Rapps and
Weyuker [14] proposed an extension of the control flow graph,
called Def-Use Graph (DUG), to add information related to
variable usage.

The activity of testing involves manipulation of a large
amount of data. The generation and execution of test cases
can be highly expensive and error prone if it will be done
manually. It is also necessary to analyze the test results and
assess whether the criteria for testing were properly covered.
Testing tools are valuable to reduce the time and increase the
quality of the testing activity in the design, execution and
analysis of test cases. Performing structural testing manually
can be infeasible depending on the program’s size. Several
tools for structural testing have been developed like ASSET
[9], ATAC [15], and POKE-TOOL [17].

JaBUTi [6] is a structural testing tool that implements
intra-method control-flow and data-flow testing criteria for
Java programs. These criteria include all-nodes, all-edges and
all-uses. It also considers these criteria with and without
taking into account exceptional flows. JaBUTi implements
some testing coverage criteria that are used in the context of
unit testing, more specifically for testing each method (intra-
method). These criteria are classified in exception-independent
(ei) and exception-dependent (ed) [6]. Basically, the ei-criteria
consider exception-free paths and the ed-criteria require paths
with exceptions. Vincenzi et al. [6] proposed the criteria as
below:

o All-Nodes-ei: this criterion requires that every node of
the DUG reachable through an exception-free path is
executed at least once.

o All-Nodes-ed: this criterion requires that every node of
the DUG not reachable through an exception-free path is
executed at least once.

o All-Edges-ei: this criterion requires that every edge of
the DUG reachable through an exception-free path is

71

executed at least once.

o All-Edges-ed: this criterion requires that every edge of
the DUG not reachable through an exception-free path is
executed at least once.

o All-Uses-ei: this criterion requires that every definition-
use association reachable through an exception-free path
is executed at least once.

o All-Uses-ed: this criterion requires that every definition-
use association not reachable through an exception-free
path is executed at least once.

One of the advantages of JaBUTi is that it does not
require the Java source code to perform its activities. The
instrumentation, test execution and coverage analysis are based
on the Java bytecode. This tool was developed as a desktop
application that requires human interaction to perform testing
activities. The tester must operate the tool in order to create
a testing project and to select classes to instrument. The tool
instruments the selected classes and generates a set of required
elements for each criterion.

The tester may implement test cases according to the JUnit
framework [18] for covering the generated required elements.
The test cases are submitted to JaBUTi and are executed to
generate a trace file that is used to perform coverage analysis.
The tester can see a set of reports that includes control flow
graphs and coverage analysis by method, criterion or project.
The results can be used to evaluate and decide whether the
activity shall stop or more test cases should be added to reach
a better coverage. All tests carried out by the JaBUTi tool
are saved as a JaBUTi project, which can be reloaded at any
time for improving its test set, querying required elements and
coverage analysis. Extensions to implement control and data
flow criteria for testing Java and Aspect] programs have also
been developed [6], [8].

IV. JABUTISERVICE: AN OVERVIEW

The JaBUTiService is based on the JaBUTi tool implemen-
tation. We performed a detailed analysis of the human interac-
tions needed to operate JaBUTi with its GUI and defined the
operations of the JaBUTiService interface. We removed the
desktop interface of JaBUTi and reused its core components
responsible for performing source code instrumentation and
coverage analysis.

The architecture of the JaBUTiService is presented in Fig-
ure 3. JaBUTiService operations are described by a WSDL file.
Any client can get this file and generate the data types and
stubs to invoke JaBUTiService operations. The first version of
JaBUTiService is publicly available for tests '.

The JaBUTiService is composed of four components: 1)
Axis2 engine [19]; 2) JaBUTiService Controller; 3) a Database
(DB); and 4) JaBUTiCore. Axis2 is a Java-based implemen-
tation for both the client and server sides to send, receive
and process SOAP messages. The JaBUTiService Controller
component implements the operations published on the WSDL
interface. It is a controller that receives messages, accesses

Uhttp://www.labes.icmc.usp.br/“jabutiservice

the Database and calls JaBUTiCore operations to perform
instrumentation and coverage analysis. The Database stores
testing projects’ information, including instrumented classes,
test cases and trace files. The JaBUTiCore component wraps
the core classes of the JaBUTi tool that handle instrumentation
and coverage analysis.

JaBUTiService

c W A :
L > - ¥ JaBUTiService |—» JaBUTi

| S - controller |q— Core

E e D« |

N L S ¢:ﬁ

T 2 { 0B |

Fig. 3. Architecture of JaBUTiService.

A comprehensive set of operations was defined to provide
the structural testing service that would be useful for the
service clients. The operations are at a low level of granularity
and a tester must use a sequence of operations to perform
structural testing using the service (see the JaBUTiService
website for more details). These operations can be combined
to create workflows for performing unit, pairwise, and pointcut
based (integration) testing. Table I shows the list of operations
available at the JaBUTiService’s interface.

[ID | Operation name |
opl createProject
op2 | updateProject
op3 deleteProject
op4 | ignoreClasses
opS selectClassesTolnstrument
op6 | getAllRequiredElements
op7 | getRequiredElementsByCriterion
op8 getGraph
op9 | addTestCases
oplO | getlnstrumentedProject
opll | sendTraceFile
opl2 | getCoverageByCriteria
opl3 | getCoverageByClasses
opl4 | getCoverageByMethods
opl5 | getAllCoveredAndUncoveredElements
opl6 | clearProject

TABLE I
OPERATIONS OF JABUTISERVICE INTERFACE.

JaBUTiService is a stateful web service and needs to
follow a sequence of operation execution. The state machine
for a project tested with the JaBUTiService is presented in
Figure 4. We refer to the ID used at the enumeration of the
JaBUTiService’s operations (Table I) to simplify the operation
calls in Figure 4. Operations on a higher level of granularity
can be developed using the current operations.

The state machine starts when a project is created (opl).
The machine moves to the state “Created” and to its sub state
“Idle”. The project may be updated (op2), cleared (opl6) or
removed (op3) at any time. Any update leads to “Idle” again.
The operation deleteProject (op3) ends the project’s life cycle.

72

Iop‘I

Created
: Instrumented
Idle op5
P oo
op12, op13,
op9 op14, op15
op2 p14, op
e o ¢ optg (et BT
op6, TestCases .
07| Added il —
op8
gopi’:
Fig. 4. State Machine for a project in the JaBUTiService.

Starting at the “Idle” state, the user may select classes to
be ignored for instrumentation (op4). The user also needs to
select classes to be instrumented by JaBUTiService (op5). This
operation leads the project to the “Instrumented” state and
to its nested state “Ready”. The operations to get required
elements (op6), get required elements by criterion (op7) and
get the def-use graph of each method (op8) can be called at
any time in the “Instrumented” state. These operations do not
change the project’s state.

The operation to add test cases to the project (op9) leads the
project to the “TestCases Added” state. At this moment, the
JaBUTiService will create a package with the instrumented
classes, test cases and instructions to execute the project to
generate the execution trace file. We chose to let the tester
execute the instrumented code in the client environment,
instead of executing it in the server. The reason is that usually
tested programs use external libraries, databases and even other
systems. It would be very hard to configure the environment
to execute the program under test at the server side. Thus,
the tester must get the instrumented code (op10 - the machine
moves to the “Waiting execution” state) and execute it locally.
A trace file will be generated automatically and it must be
sent to the JaBUTiService (opl1).

At this moment, the machine moves to the state “Executed”.
In this state, the user can add new test cases (op9 - that leads
to “TestCases Added” again) and repeat the process; get the
overall testing coverage of the project (opl12); get the testing
coverage by class (op13); get the testing coverage by method
(op14); and get the covered and uncovered required elements
(opl9).

Other operation not shown in this example is one to set
infeasible requirements that are not to be taken into account on
coverage analysis. This can be used to reach a 100% coverage,
for example.

V. USAGE EXAMPLE

We designed an example to validate the usage of the
JaBUTiService that includes the following steps:

1) Choose a Java program to test;

2) Design or reuse test cases;

3) Create a script to invoke JaBUTiService’s operations and
perform structural testing; and

4) Present the coverage analysis according to the selected
criteria.

We chose to use the classes of the Apache-Commons-
BeanUtils library [20] from the Apache Software Foundation
to show how to use JaBUTiService. This library contains 62
classes. We decided to perform unit testing (considering a
method as a unit) using the following criteria: all-nodes-ed, all-
nodes-ei, all-edges-ed, all-edges-ei, all-uses-ed and all-uses-ei.
The library under test has 478 methods and comes together
with a set of 243 test cases distributed in 27 JUnit classes [20].
The script to invoke JaBUTiService’s operations was designed
with this sequence of operations:

1) createProject (opl);
selectClassesTolnstrument (op5);
getAllRequiredElements (op6);
addTestCases (op9);
getInstrumentedProject (op10);
sendTraceFile (opl1); and

getCoverageByCeriteria (op12).

After creating the project, selecting the classes to instrument
and adding the test cases, the instrumented package is auto-
matically sent to a specific directory (testing directory). The
test cases of the instrumented package are also automatically
executed and the script remains blocked until the generation of
the trace file is done. In the next step the script finds the trace
file in the testing directory and sends it to the service to get
the coverage by criteria. Since the configuration of the scripts
for each program to be tested is not trivial, we created a user
interface to help this activity. A screenshot of the application
can be seen in Figure 5.

The tab Create Project is selected to inform the
project name, the user name, the address where the service is
installed for testing, and to select classes to be instrumented.
Tab Add TestCases is where the tester informs test cases
to be used. Tab Configurations is used to indicate the
place where the package with the instrumented code will be
sent and run together with the libraries it needs. Tab Reports
is where the tester must select the desired reports (which
are the required elements and coverages for each selected
criterion). Reports are generated in HTML and can be exported
in the XML format.

Using the desktop application, the user does not need to
know details of how to send the trace file to the JaBUTiS-
ervice. When the button Run is pressed, the instrumented
classes are sent to the service, along with the test cases. Next,
the application requests from the service the instrumented
package and downloads it to the selected folder using the
tab Configurations. The instrumented package is then
run against the test cases and using the selected libraries,
if necessary. The tracing file is sent automatically back to
JaBUTiService and the selected reports are displayed in the
HTML format and all data is saved in XML.

73

A snippet of our script to invoke JaBUTiService’s operations
is shown in Listing 1. The JaBUTiService is represented by a
stub that encapsulates the service invocation. Line 1 shows
the invocation of the getlnstrumentedProject operation and
the result is returned in resp. The response is a package
containing the instrumented code and the test cases. The
package is saved in the testing directory (TestDir) (lines
2-6). A command line to execute the package against the test
cases is defined (lines 7-9) and executed (line 10). The script
remains blocked (line 11) until the execution is finished. After
the execution, a trace file is created and sent to the service
(lines 12-18).

Listi Seri . TaBUTiService’ Lo

GetlnstrumentedProjectResponse resp = stub.
getlnstrumentedProject(input);

datahandler = resp.get_return().getFile();

FileOutputStream fos = mew FileOutputStream (new File
(TestDir + "package.jar"));

datahandler . writeTo (fos);

fos . flush () ;

fos.close ();

String execString = "java -cp "+TestDir+"package. jar

".
5

w o

(RN

s execString+=" br.Jjabuti.junitexec.JUnitJabutiCore -
trace "+TestDir+"test.trc —cp ";

9 execString=execString+TestDir+"package.jar -tcClass
"+ TestSuiteClass ;

10 Process p = Runtime.getRuntime () .exec(execString);

1 p.waitFor();

12 SendTraceFile inputTrace = mew SendTraceFile();

13 inputTrace.setProjectld (projectid);

14 inputTrace .setldUserName (user);

15 fds = new FileDataSource (new File (TestDir + "test.
trc"));

16 datahandler = new DataHandler(fds);

17 inputTrace.setTracefile (datahandler);

18 SendTraceFileResponse traceResp = stub.sendTraceFile
(inputTrace);

The test of the library Apache-Commons-BeanUtils with
JaBUTiService through the desktop application and scripts
resulted in the coverages shown in Figure 6. The first column
shows the criteria used in the test. The coverage generated
in this example takes into account the whole project and the
results are expressed as the sum of the number of elements
required and covered by all methods of the 62 classes. The
second column lists the sum of the required elements to
cover the corresponding criteria of the first column. The third
column lists the sum of the covered elements and the fourth
column shows the information as a percentage of the coverage
achieved by the set of test cases. For the all-uses-ed criterion,
the number of required elements was 0 because no variable
was used in the exception handlers. The obtained coverages
could also be shown for each method and for each class.
Coverage of each method, for example, could be more useful
to show for which ones the test cases are not being effective
to cover the required criteria and thus to create more test cases
to achieve a satisfactory coverage.

The construction of scripts and the desktop application
were decisions that we made for the first evaluation of the
service. However, there are several ways to access the service.
In the context of the QualiPSo project, the JaBUTiService

l Create Project ’ Add TestCases ’ Configurations | Reports

Project name: User: Endpoint

‘Projeto BeanUtiIs| ‘ ‘mareler

‘ ‘htlp:,’,’Iocalhost‘8080/]abutiprojectSvn!sewices,’jaBUTiSewice1_0 ‘

Select a Java program for instrumentation

‘,’home,’mareIeeroutorado,’lmplementacao,’JavaPrograms,’beanutils.jar

All classes

e

<<<<

>>>>*

*<<<<

Select classes to be instrumented

‘ Procurar

Selected classes

org/apache/commons/beanutils/MappedProper
org/apache/commons/beanutils/locale/LocaleB
org/apache/commons/beanutils/MutableDynaCl
org/apache/commons/beanutils/BeanComparat
org/apache/commons/beanutils/ConvertUtils.cl
org/apache/commons/beanutils/WrapDynaBean
org/apache/commons/beanutils/BeanUtils.class
org/apache/commons/beanutils/DynaBean.clas
org/apache/commons/beanutils/ResultSetiterat
org/apache/commons/beanutils/WrapDynaClass

org/apache/commons/beanutils/DynaProperty.

[4]

] Il [

[¥]

Fig. 5.

Coverage by criterion

Criterion MNumber of Elements |[Number of Covered Elements |Percentage
All-Modes-ei |1571 9EB 51.0%
All-Modes-ed | 162 45 27.0%
All-Edges-ei |1583 B8E0 54.0%
All-Edges-ed | 202 17 B8.0%
All-Uses-ei ||3639 1783 46.0%
All-Uses-ed |0 o] 0%

Fig. 6. Coverage data for the Apache-Commons-BeanUlils.

has been accessed through a Mashup interface. Mashup is a
technology for combining the content from more than one
source into an integrated application [21]. Each data source
can be represented by a small application called gadget. Thus,
the mashup application is a set of gadgets. Some gadgets have
been developed for accessing JaBUTiService using EzWeb
[22] to manage them in the QualiPSo project.

Currently, JaBUTiService is being used by an educational

tool called Progtest [23]. Progtest is going to support testing
and programming courses to evaluate students’ exercises.

User interface to configure the scripts.

The students can submit their programs and test cases and
then Progtest generates reports based on control and data
flow coverage analysis and the evaluation of each test case.
The instrumentation and coverage analysis are performed by
JaBUTiService.

VI. RELATED WORK

The idea of software tools available as Web services has
emerged recently and a few proposals are found in the litera-
ture. Some of them envisage the integration of services offered
and others have just the provision of a service in particular.
The work related to the availability and integration of services
is proposed by Ghezzi and Gall [4], Baldamusa et al. [24], and
Yap et al. [25]. Bartolini et al. [26] refer to the availability of
a stand-alone testing service, without allowing for integration
with other similar services.

Ghezzi and Gall [4] proposed a platform that offers services
for software analysis. The idea is that stand-alone tools of
analysis are encapsulated by a service and registered in the
proposed platform. The registered tools are classified by a
taxonomy and data input and output are standardized by an
ontology. The platform provides mechanisms for the selection
of tools and a BPEL workflow is instantiated for their invoca-
tion. This is an idea similar to ours, except for being a different
type of software engineering tool, which could be integrated
and composed with JaBUTiService.

Bartolini et al. [26] developed an approach called SOCT
(Service-Oriented Coverage Testing) in which is proposed a
web service called TCov to support structural testing services.
The developer must manually instrument the service or com-
position of services to be tested and include calls to TCov
to record the paths of execution. Every time the instrumented
service runs, the paths of execution will be recorded in TCov.
Thus, the client or integrator using the service can run test
cases and query TCov to learn the achieved path coverage.
For any coverage analysis, the client or integrator should use
the data collected from TCov and do it manually or either
develop a tool to do this. This work is very similar to ours
in the sense that it proposes a service to support structural
testing. However, their aim is to test (BPEL) composition of
services while our aim is to test any type of Java and Aspect]
based software, including web services.

SOCT supports the developer partially because the instru-
mentation of the service must be done manually. TCov is
used to register the trace of executions and the developer
must choose which information to log in accordance with the
criteria that will have its coverage analyzed. In our approach,
the support to the developer is fully automated, because
JaBUTiService performs code instrumentation automatically.
The support of SOCT to the client or integrator is also partial.
The user of TCov must retrieve the data collected and stored
by TCov and perform the coverage analysis manually or with
another tool not provided by SOCT. In our approach, the
JaBUTiService performs the analysis of structural coverage
criteria from the traces of the instrumented code.

Baldamusa et al. [24] used web services for creating an
environment to integrate a set of formal verification toolkits.
There is a verification scripting facility so that users are
able to specify how the sub-tasks within any verification
run should be carried out. They claimed that web services
are suitable for promoting distributed and open integration
which fits the decentralization and dynamism required by
the formal verification community. Another proposal is to
establish directories for publishing web services specifically
related to formal verification. Service composition becomes a
new service or a workflow and the formal verification services
are invoked from within it.

Yap et al. [25] described an approach to support the dynamic
discovery, integration and invocation of remote software engi-
neering tools using web services. These tools are facilities for
JEdit, an open source Integrated Development Environment.
Each facility is encapsulated as a remote web service that
is dynamically registered, discovered, integrated, and invoked
from within JEdit IDE as required. In this work it does not
result in a workflow, but in functionalities that are added
to the desktop tool. Our work allows that tools available as
services can either be integrated in an workflow (using BPEL,
for example) or by a desktop tool similar to the presented in
Section V.

75

VII. CONCLUSION

In this paper we discussed the idea of providing and using
testing tools as web services. We also presented the use of
a web service to perform structural testing and support the
developer of Java programs in the activity of software testing.
A proof of concept was designed and presented.

Despite the advantages listed in Section II, we identified
some difficulties in the use of a testing tool as a web service.
Currently, there are not many software engineering services
available. For this reason, all the potential integration among
these types of services cannot be carried out yet. For instance,
it is not possible to integrate an issue tracker or version control
service because they are not available as web services.

Another limitation is related to interactivity. Software tools
with graphical interfaces facilitate user interaction with the
features offered by the tool. The JaBUTi tool, for example,
allows testers to interact with the control flow graph that
represents the test code and see the corresponding source code,
nodes and paths not covered, which helps generating new test
cases to increase testing coverage. This type of interaction is
not possible with the JaBUTiService in its current version.

The present version of the JaBUTiService has some of
the problems inherent from the web services technology. For
instance, the processing time is worse than the stand-alone
version, since there was an increase in the XML parsing
overhead and the network communication add some delay to
response time. There are other issues to be considered like
authentication, security and testability.

As future work, we intend to perform the following im-
provements in our approach. JaBUTiService will be published
in a specialized broker for sharing testing services. An on-
tology of software testing [10] is being used to classify the
published testing services and to standardize input and output
data in order to facilitate tool integration. JaBUTiService will
have new features to increase the testability of web services
coded in Java and facilitate the task of integrators when testing
a service to be used in a composition. JaBUTiService will also
be able to store results of testing and make them available for
certifiers and will be integrated with other QualiPSo factory
services like version control and issue tracker.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank the Brazilian funding
agencies: FAPESP (process 2008/03252-2), CAPES, CNPq
and to the QualiPSo Project (IST-FP6-IP-034763) for their
support.

REFERENCES

[1] G. J. Myers, C. Sandler, T. Badgett, and T. M. Thomas, The Art of
Software Testing. John Wiley & Sons, Inc., Hoboken, New Jersey, 2004.
M. N. Wicks and R. G. Dewar, A new research agenda for tool
integration, Journal of Systems and Software, vol. 80, no. 9, pp. 1569
1585, 2007.

M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, and B. J.
Kramer, Service-oriented computing: A research roadmap, in Service
Oriented Computing, ser. Dagstuhl Seminar Proceedings, F. Curbera,
B. J. Kramer, and M. P. Papazoglou, Eds., vol. 05462. Internationales
Begegnungs- und Forschungszentrum fur Informatik (IBFI), Schloss
Dagstuhl, Germany, 2005.

(2]

(3]

(41

(6]

(7]

(81

(9]

[10]

(1]

[12]

[13]

[14]

[15]

G. Ghezzi and H. Gall, Towards software analysis as a service. in ASE
Workshops. IEEE, 2008, pp. 110. [Online]. Available: http://dblp.uni-
trier.de/db/conf/kbse/asew2008.html

QUALIPSO, 2009, qualipso - Quality Plataform for Open Source
Software. Available on-line at: http://www.qualipso.org/.

A. M. R. Vincenzi, M. E. Delamaro, J. C. Maldonado, and W. E.
Wong, Establishing structural testing criteria for java bytecode, Software
Practice & Experience, vol. 36, no. 14, pp. 15131541, 2006.

1. G. Franchin, O. A. L. Lemos, and P. C. Masiero, Pairwise structural
testing of object and aspect-oriented java programs, in The 21th Software
Engineering Brazilian Symposium, Joao Pessoa, PB, Brazil, 2007.

O. A. L. Lemos, A. M. R. Vincenzi, J. C. Maldonado, and P. C.
Masiero, Control and data flow structural testing criteria for aspect-
oriented programs, Journal of Systems and Software, vol. 80, no. 6, pp.
862882, 2007.

P. Frankl and E. Weyuker, A data flow testing tool, in Proceedings
of IEEE Softfair II Conference on Software Development Tools, Tech-
niques, and Alternatives, Dec. 1985, pp. 4653.

E. F. Barbosa, E. Y. Nakagawa, and J. C. Maldonado, Towards the
establishment of an ontology of software testing, in SEKE, K. Zhang,
G. Spanoudakis, and G. Visaggio, Eds., 2006, pp. 522525.

E. Prudhommeaux and A. Seaborne, 2008, sPARQL Query Language
for RDF. W3C Recommendation.

J. C. Maldonado, Potential uses criteria: A contribution to software
structural testing, PHD thesis, DCA/FEE/UNICAMP, Campinas, SP,
1991, (in portuguese).

H. Zhu, P. A. V. Hall, and J. H. R. May, Software unit test coverage
and adequacy, ACM Computing Surveys (CSUR), vol. 29, no. 4, pp.
366427, 1997.

S. Rapps and E. J. Weyuker, Selecting software test data flow informa-
tion, IEEE Transactions on Software Engineering, vol. 11, using data
no. 4, pp. 367375, Apr. 1985.

J. R. Horgan and S. London, Data flow coverage and the C language,
in TAV4: Proceedings of the symposium on Testing, analysis, and
verification. New York, NY, USA: ACM, 1991, pp. 8797.

76

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

E. Kapsammer, T. Reiter, and W. Schwinger, Model-based tool inte-
gration - state of the art and future perspectives, In proc. of the 3rd
International Conference on Cybernetics and Information Technologies,
Systems and Applications (CITSA 2006), 20-23, Orlando, USA, 2006.
[Online]. Available: http://www.bioinf.jku.at/publications/2006/0706.pdf
M. L. Chaim, Poke-tool a tool for supporting structural testing based on
data flow analysis of programs, Masters thesis, DCA/FEEC/UNICAMP,
Campinas, SP, Apr. 1991, (in portuguese).

K. Beck and E. Gamma, 1998, jUnit Test Infected: Programmers Love
Writing Tests - Java Report, July 1998, Volume 3, Number 7. Available
on-line at: http://JUnit.sourceforge.net/doc/testinfected/testing.htm.

T. A. S. Foundation, 2009, apache Axis2 Users Guide. Available on-line
at: http://ws.apache.org/axis2.

BeanUtils, 2009, apache Common BeanUtils. Available on-line at:
http://commons.apache.org/beanutils/.

S. Cetin, I. N. Altintas, H. Oguztuzun, A. H. Dogru, O. Tufekci, and
S. Suloglu, A mashup-based strategy for migration to service-oriented
computing, in IEEE International Conference on Pervasive Services,
2007, pp. 169172.

EZWEB, 2009, ezWeb - Developing Approach. Available on-line at:
http://ezweb.morfeo-project.org/EzWeb-Info/Tutorial/.

E. Barbosa, M. Silva, C. Corte, and J. Maldonado, Integrated teaching of
programming foundations and software testing, in 38th Annual Frontiers
in Education Conference, Oct. 2008, pp. STH5S1H10.

M. Baldamusa, J. Bengtsona, G. Ferrari, and R. Raggi, Web services
as a new approach to distributing and coordinating semantics-based
verification toolkits, in First International Workshop on Web Services
and Formal Methods (WSFM), 2004.

N. Yap, H. C. Chiong, J. Grundy, and R. Berrigan, Supporting dynamic
software tool integration via web service-based components, in ASWEC
05: Proceedings of the 2005 Australian conference on Software En-
gineering. Washington, DC, USA: IEEE Computer Society, 2005, pp.
160169.

C. Bartolini, A. Bertolino, and E. Marchetti, Introducing serviceoriented
coverage testing. in ASE Workshops. IEEE, 2008, pp. 5764. [Online].
Available: http://dblp.uni-trier.de/db/conf/kbse/asew2008.html

