2013 VII Brazilian Symposium on Software Components, Architectures and Reuse

BISTFaSC: An Approach To Embed Structural
Testing Facilities Into Software Components

Marcelo Medeiros Eler
School of Arts, Sciences and Humanities
University of Sao Paulo
Sao Paulo — SP
marceloeler@usp.br

Abstract—Component-based applications can be composed by
in-house or COTS (Commercial off-the-shelf) components. In
many situations, reused components should be tested before their
integration into an operational environment. Testing components
is not an easy task because they are usually provided as black
boxes and have low testability. Built-in Testing (BIT) is an
approach devised to improve component testability by embedding
testing facilities into software components usually to support
specification-based testing. Such components are called testable
components. There are situations, however, in which combining
specification and program-based testing is desirable. This paper
proposes a BIT technique designed to introduce testing facili-
ties into software components at the provider side to support
structural testing at the user side, even when the source code is
unavailable. An implementation to generate testable components
written in Java is also presented. The approach was firstly
evaluated by an exploratory study conducted to transform COTS
components into testable components.

I. INTRODUCTION

Component-Based Software Development (CBSE) is a
reuse-based approach that defines techniques to build systems
by putting existing software components together. According
to Szyperski, software components are units of composition
with contractually specified interfaces and context dependen-
cies [1]. A software component implements specific func-
tionalities that may be shared by several applications. The
functionalities provided by a component can be only used
via operations exposed by its interfaces. Component-based
applications can use in-house or COTS (Commercial off-the-
shelf) components.

CBSE brings many benefits to software development and
maintenance [2]. Components are assumed to reach a high
level of quality assurance in a short period of time. Due to
market pressure, applications composed by such components
are expected to inherit this high level of quality [3]. Experience
showed, however, that this assumption is not necessarily true
in practice [4], [3], [5].

Beydeda and Weyuker state that the component provider
might not be able to anticipate all possible application context
and technical environment in which the component might be
used [3], [4]. Thus, the quality assurance conducted by the
component provider might not be effective. This scenario gives
to component users the responsibility of testing the reused
components before gluing them together.

978-1-4799-2531-5/13 $31.00 © 2013 IEEE
DOI 10.1109/SBCARS.2013.20

89

Paulo Cesar Masiero
Institute of Mathematics and Computer Science
University of Sao Paulo
Sao Carlos — SP
masiero@icmc.usp.br

Testing COTS, however, is not an easy task, because
they present low testability. Testability has been defined as
the degree to which a system or component facilitates the
establishment of test criteria and the performance of tests to
determine whether those criteria have been met [6]. Compo-
nents present low testability because they are usually provided
as a black-box and the source code is seldom available to
conduct program-based testing [3]. Component users are thus
forced to use only specification-based techniques. Moreover,
component users also suffer from lack of information because
relevant documentation and data to derive test cases and plans
might not be available.

Several Metadata and Built-In Testing (BIT) approaches
have been proposed to mitigate the problem of lack of infor-
mation and low testability. Metadata are intended to provide
component users with relevant information to conduct and
to evaluate testing activities. These information may be test
scripts, the inner structure of the component or invocation
sequence constraints, for example [7].

BIT approaches improve component testability by adding
testing facilities at the provider side to support testing activities
at the user side. Such facilities are usually operations to control
and observe a state machine, to evaluate invariants, to validate
contracts or sequence constraints, and to generate or execute
test cases automatically [8], [9], [10], [11], [12], [13].

Metadata and BIT approaches indeed contributed to
improve components testability, especially to support
specification-based testing. However, there could be situations
in which black-box testing of components is not deemed
sufficient and combining implementation and specification-
based testing techniques is desirable. In fact, these two
techniques are meant to find different types of failures and
their combined application may provide higher confidence
[14].

The main purpose of this paper is to present an overview
of the approach called BISTFaSC (Built-In Structural Testing
Facilities for Software Components) that was designed to
improve components testability by embedding testing facili-
ties into software components to support program-based test-
ing techniques. Components with testing facilities are called
testable components, as in traditional BIT techniques. They
have probes inserted by instrumentation to record information
about their execution (paths and data exercised). Tester com-
ponents are associated with testable components to define the

cps’

Conference Publishing Services

boundaries of a test session and to generate coverage analysis
based on the information collected during a test session.

BISTFaSC is a generic approach that can be applied to
different technologies and platforms since it only defines
guidelines to transform software components into testable
components. However, to validate our approach, we also
present an implementation to generate testable components
written in Java. This implementation is used to validate the
feasibility of the approach by means of an exploratory study.
The exploratory study is used to present how testable compo-
nents can be used at the user side during testing activities.

This paper is organized as follows. Section II presents
basic concepts of built-in and structural testing. Section III
introduces the main concepts of BISTFaSC and Section IV
shows its Java implementation. Section V presents an ex-
ploratory study conducted to validate and to understand the
main concepts of the approach. Section VI discusses the related
work and Section VII provides some concluding remarks and
future directions.

II. BACKGROUND

A. Structural Testing

Testing is the process of executing a program with the
intent of finding faults [14]. Structural testing focuses on
testing the structure of a program. Test cases are generated to
exercise the internal logic considering instructions, paths and
data. Test data is derived from the implementation according
to criteria used to determine whether the program under test
is completely tested [15], [14]. Three well known structural
criteria are the following: all-nodes, all-edges and all-uses.

The all-nodes and all-edges criteria consider the execution
control of the program and they are known as control-flow
criteria [16]. It is common to adopt a model called Control-
Flow Graph (CFG) to represent the inner structure of the
program to support the analysis of control-flow criteria. In this
particular graph, each node represents a block of instructions
without flow deviation and each edge represents a possible
transition from a block to another. The all-nodes criterion
requires that every node of the CFG be executed at least once,
while the all-edges criterion requires the execution of every
edge at least once.

The all-uses criterion takes information about the program
data flow. Rapps and Weyuker [17] proposed an extension of
the CFG called Def-Use Graph (DUG) to add information re-
lated to variable usage. The classical all-uses criterion requires
that every definition of a data object and its associated use be
executed at least once.

Structural testing criteria are used to derive test require-
ments that should be met by test cases execution. Examples
of test requirements is presented in Figure 1, which shows
an example of a Java method and its CFG associated. The
structural test requirements of the method calcFactorial
are presented in Table I. The all-nodes requirements define
which blocks of instructions should be executed by the test
cases. The all-edges requirements define which transitions
from a node to another should be exercised at least once. In
the all-uses requirements, (x,4,(3,5)) means that the variable
x is defined in node 4 and used in a decision that takes the

90

control flow from node 3 to node 5. The requirement (x,1,4)
means that variable x is defined in node 1 and it is used in a
computation in node 4. Test cases should be created to exercise
all possible definition and use pairs.

1 public int calcFactorial(int N)
2{
3 int x=N;
if (x<1)

return 1;
else

while (x>1)

N=N*(--x);
return N;

(1)
@]
"

= ©ONO O A

0}

Fig. 1. Source code and the CFG of the operation calcFactorial

TABLE 1. TEST REQUIREMENTS OF CALCFACTORIAL

Criterion
All-nodes
All-edges
All-uses

Test requirements

1,2,3,4,5

(1,2), (1,3), (3.4), (3,5), (4.3)

(N,1,5), (N,1,4), (N.4,5), (x,4,(3,5)), (x,4,(3.4)), (x,1,4),
(x,1,(3,4)), (x,1,(3,5)), (x,1,(1,2)), (x,1,(1,3))

After executing the test cases, a coverage analysis is per-
formed to measure how many test requirements were satisfied,
which indicates how much of the structure of the program was
actually exercised during the test session.

B. Built-In Testing (BIT)

According to Harrold et. al [7], the lack of information
regarding COTS brings many problems to the validation, to
the maintenance and to the evolution of component-based
applications. BIT is one of the approaches that stands out
from the literature to handle the issue of lack of control and
information in component testing.

BIT is an approach created to improve the testability of
software components based on the self-testing and defect-
detection concepts of electronic components. The general idea
is to introduce functionalities into the component to provide
its users with better control and observation of its internal
state [10], [11], [12]. A component developed under the BIT
concepts can also contain test cases or the capability to
generate test cases. Such components are commonly called
testable components.

Components without testing facilities are called regular
components in the remainder of this paper. Interfaces and op-
erations of regular components are called, respectively, regular
interfaces and regular operations. When a regular component
becomes a testable component, it has a regular interface with
regular operations as well a testing interface with operations
to support testing activities.

Based on the concepts of BIT, an European group called
Component+ designed a testing architecture composed by
three components [8], [9], [10], [11], [12]:

e Testable Component: it is the component under test
which incorporates testing facilities.

e Tester Component: implements or generates test cases
to test the regular operations of the testable compo-
nent.

e Handler Component: it is used to throw and handle
exceptions. This component is especially important in
fault-tolerant systems.

The testable components of the Component+ architecture
have testing interfaces, whose operations control a state ma-
chine to support model based testing. A generic example of a
testable component is presented in Figure 2. Component users
can set component testers to testable components. Component
testers execute test cases against testable components, evaluate
autonomously its results and output a test summary [18].

IRegular

O) <<component>>
Testable % _ Testable Component
Component ITesting
*Q)i <<Regularinterface>>
operation1()
A\ operation2()
CP <<TestingInterface>>
setTester(Tester)
Tester% invokeTester()
Component setState(State)
isInState()
Fig. 2. A Component+ testable component.

A testable component can operate in two modes: in normal
and in maintenance mode. The testing capabilities of the
testable component are turned off in the normal mode and
they are turned on in the maintenance mode.

Atkinson and Gross [9] proposed a BIT method integrated
with the KobrA approach [19] to validate contracts between
components and their users during deployment time. Lima
et. al [20] developed a model-driven platform to generate
testers according to this method. Brenner et. al [21] developed
an environment in which tasks can be set to activate tester
components in many situations to perform testing activities
during runtime. This environment can also react according to
the test results. For example, the system can be shut down and
components can be replaced.

There are situations in which COTS have no BIT capabili-
ties. Barbier et. al [22] created a library called BIT/J and a set
of tools to allow users to introduce testing facilities into COTS
developed in Java. BIT/J generates the testable and the tester
components automatically. The testable component code must
be changed to manually include states and possible transitions.
The tester component code must also be changed to include
test cases. Bruel et. al [23] proposed an evolution to the BIT/J
library using aspect oriented programming.

In summary, BIT approaches focus on providing support to
specification-based testing, which is a natural alternative given
the black box nature of software components. The approach
presented in this paper, on the other hand, proposes facilities
to support structural testing.

III. BISTFASC: BUILT-IN STRUCTURAL TESTING
FACILITIES FOR SOFTWARE COMPONENTS

Components are usually provided as a black box and source
code is seldom available to users who cannot conduct program-
based testing [3]. The BISTFaSC approach was devised to im-
prove the testability of Component-Based Systems by adding

91

testing facilities into software components at the provider
side to support structural testing at the user side, but without
revealing the source code of the component. Figure 3 shows
an illustration of the approach.

1 - Develops %
—— Regular | IRegular
"\ 2 -Instruments | Component
Provider

User

3 —Turns into 5 — Creates

% ITesting
Testable
Component |IRegular
Controls and \r DT.eSt %
Observes river
4 - Develops Tester%
Component Q

Fig. 3. An illustration of the BISTFaSC approach

The BISTFaSC approach was designed to be used by com-
ponent providers since they should be interested in providing
components with high testability to their users. Testability is an
important quality indicator since its measurement leads to the
prospect of facilitating and improving a test process [24], [25].
Then, providing components with high testability can represent
an advantage in competition [3].

In BISTFaSC, component providers develop regular com-
ponents and include structural testing facilities by instrumen-
tation. Components with structural testing facilities are called
testable components to comply with the BIT approaches found
in the literature. The providers also develop tester components
to control and observe testable components, according to the
recommendations proposed by the Component+ architecture
[9], [10], [11], [12]. Both testable and tester components are
packed and made available to external users.

Component users purchase a component with testing ca-
pabilities and develop a test driver to execute test cases
against the testable component. The test driver uses the tester
component to put the testable component in testing mode
(as the maintenance mode in Component+) and execute the
test cases to exercise the regular operations of the testable
component. Then, the tester component is used again to put
the testable component in regular mode and generate coverage
analysis.

BISTFaSC is a generic approach and may be possibly used
to create testable components with any implementation tech-
nology and platform. This approach only provides guidelines
to help providers creating testable components and users to
use the available structural testing facilities. These guidelines
are presented in details as follows.

A. Guidelines To Create Testable Components At The Provider
Side

1) Development of the Regular Component: this stage rep-
resents the regular component engineering activities conducted

to develop components. Regular components, in this paper, are
components that do not have any intended testing facilities to
support testing activities at the user side. Component providers
employ specific programming tools and languages to develop
their regular components for specific target platforms or frame-
works. They can also develop test cases to perform quality
assurance activities.

2) Instrumentation of the Regular Component: the purpose
of this activity is to modify the regular component to give
it the capability to support the structural testing at the user
side. This modification process is called instrumentation. In-
strumented regular components are called testable components.
Instrumentation is a technique in which probes are inserted
into all the component’s code. Probes are instructions placed
in specific locations of the code to log execution data.

The implementation of the probes depends on which in-
formation must be collected during the component execution.
The information to be collected depends on the structural
testing criteria supported by the testable component. If the
testable component provides coverage analysis only for the
all-nodes and the all-edges criteria (control flow), for example,
the probes must log information about execution paths. If the
testable component also provides coverage analysis for the all-
uses criterion (data-flow), for example, the probes must also
log data related to variable definition and usage. The data
collected by the probes must be stored somewhere. A database
or an XML file could be used, for example.

The instrumentation process must also collect and store the
test requirements of the component according to the criteria
employed to implement the probes. The test requirements
could be sent to a database or written in an XML file, for
example. A standard format to express the test requirements
of the component and the data collected from its execution
must be defined. If, for example, the test requirement for the
deviation flow from Node 12 to Node 17 is expressed as Node
12 —> Node 17, the probes must register this information
using the same pattern when the deviation flow goes from
Node 12 to Node 17 during the component execution. This
is important because the coverage analysis will use the log
generated by the probes to define which test requirements were
satisfied and which were not.

Probes are instructions that record data into files or
databases (I/O operations), which may slow down the perfor-
mance of the component. To avoid the overhead that may be
brought by probes execution, BISTFaSC defines that testable
components should operate in two modes: in regular and
in testing mode. The probes should be turned off when the
testable component is in regular mode and should be turned
on when the testable component is in testing mode. In general,
testable components operate in testing mode only when they
are being executed in the context of a test session.

The instrumentation process can be manually done by the
providers or fully automated by a tool. Performing this process
manually, however, brings many effort to providers and it
is also error prone. Then, BISTFaSC recommends that this
process is performed by a tool that should be implemented
according to the target implementation.

3) Development Of The Tester Component: the instru-
mentation process collect test requirements and insert probes

92

into regular components that are transformed into testable
components. This process, however, only prepares the testable
component to generate data to support structural testing. The
objective of this activity is to develop the tester component
that controls and observes the testable component.

The tester component interface must expose operations to
define the boundaries of a test session (control) and to generate
a coverage analysis report based on the information collected
from a test session (observe). The boundaries of a test session
can be defined by operations developed to start and to finish
a test session. The testable component starts to operate in
testing mode when the operation of the tester component to
start a test session is called. Consequently, the probes of the
testable components are turned on at this point and start to log
execution data. The testable component must return to normal
mode and the probes must be turned off when the operation
of the tester component to finish the test session is invoked.

The tester component also defines an operation to report
the coverage analysis of a test session execution. When this
operation is requested, the tester component use the log gen-
erated by the probes and the test requirements of the testable
components to calculate the coverage measure. The coverage
report may be presented in many ways. BISTFaSC suggest
four coverage analysis profiles:

e Operations: presents the coverage for all operation of
each class of the component (considering an object
oriented implementation).

e Interface: presents the coverage for the operations of
the component’s interface.

e C(lasses: presents the coverage for each class of the
component.

e Component: presents the coverage for the whole com-
ponent.

The tester component may also expose other operations to
provide users with more testing facilities, but it must at least
expose operations to define the boundaries of a test session
(control) and to perform coverage analysis (observation). It is
important to notice that the operations to support the testing
activities are not inserted into the testable component, but they
are exposed by the tester component. The interface of the
regular component remains the same and it still can be used
only through the interface.

4) Packing The Testable And The Tester Component: the
goal of this activity is to pack all resources related to the
testable component. The component provider must pack the
testable component and its libraries and resources along with
the tester component and the resource (database or file, for
example) used to record the test requirements of the testable
component. All these assets must be packed together because
the testable and the tester component will be executed at the
user side. The tester component, for example, needs to access
the test requirements to generate the coverage analysis report.

B. Guidelines To Use Testable Components At The User Side

Component users receive the package with the testable and
the tester component along with all resources and libraries

required. There is no difference between using a regular
component or a testable component in a regular mode. Testable
components in regular mode have no testing facility activated
and the tester component is not required.

The component user cannot use the testing facilities pro-
vided by testable components directly. The user can only
invoke the regular operations of the testable component. The
tester component must be called to put the testable component
in testing mode before conducting structural testing activities.
Figure 4 shows an illustration of this process.

Tester Testable
Component Component
User
1-startTestSession()
=

1.1-changeMode(“Testing”)
=

2-invokeOperations(...)
=

2.1-Log(...)
-

3-finishTestSession()

3.1-changeMode(“Regular”)
=

4-getCoverage(profile)
=

COVERAGE
S

Fig. 4.
user

An illustration of a test session conducted by a testable component

The user calls an operation of the tester component to
start a test session. The tester component access the testable
component and change it to the testing mode. From this point
on, every execution of the testable component will be logged
by its probes. Then, the user executes a test set against the
testable component, calling its regular operations. Next, the
user invokes the tester component to finish the test session.
The tester component returns the testable component to the
regular mode. Finally, the user invokes the operation of the
tester component to produce a coverage analysis report, which
should be generated by the tester component.

IV. A JavA IMPLEMENTATION OF BISTFASC

BISTFaSC is a generic approach and may be applied for
any component implementation, technology or target platform.
We validate the main concepts of the approach by means of
an implementation of testable and tester components written
in Java. We show, in this section, how the regular Java
components are instrumented and how they are controlled
and observed by the tester components. The use of testable
components generated by this particular implementation is
presented in the next section.

For the sake of simplicity, regular components are imple-
mented in Java without considering any specific details of
component platforms (such as EJB). Components are packed
into JAR files along with resources and libraries required.

The instrumentation process of this particular implementa-
tion inserts probes into regular components to collect control
(all-nodes and all-edges) and data-flow (all-uses) data. Per-
forming this process manually requires much effort and is error
prone. Thus, we decided to develop a tool called BITGen to

93

transform regular components into testable components. Figure
5 presents a simplified architecture of the BITGen tool.

BITGen

) JaBUTi's
JaBUTi's Coverage

Instrumenter [Analysis

Components Components

Fig. 5. The simplified architecture of the BITGen tool.

BITGen receives a regular component packed within a JAR
file and generates another JAR file containing its testable ver-
sion. If BITGen receives a JAR file called Comp. jar, for ex-
ample, it generates a package with the name Comp_BIT. jar.
Figure 6 presents the model of the testable component pack-
age generated by BITGen. The package contains the tester
(BITTester) and the testable component, an XML file for the
test requirements, a class called CoverageMode and the
CoverageAnalysis components of the JaBUTi tool. The
CoverageAnalysis components of JaBUTi are used by
BITTester to calculate the coverage and CoverageMode
is used to format the coverage report according to the profiles
suggested by BISTFaSC (see Section III-A3).

<<interface>> <<interface>>
BITTester Testable Component
=
<<JaBUTi's
N

component>>
CoverageAnalysis

v SN
<<class>> ‘
CoverageMode <<XML flle>> -
TestRequirements
<<
Fig. 6. Model of the testable component package generated by BITGen.

BITGen uses the instrumenter components of the JaBUTi
(Java Bytecode Understanding and Testing) tool [26] to in-
strument the regular component. JaBUTi is a structural testing
tool that implements intra-method control-flow and data-flow
testing criteria for Java programs. The instrumentation is based
on the Java bytecode and it is supported by BCEL (Byte
Code Engineering Library). During instrumentation, the test
requirements regarding the control and data-flow criteria are
written to an XML file.

The tester component associated to the testable compo-
nent is automatically generated by BITGen. Figure 7 shows
the interface of the tester component. The tester compo-
nent is called BITTester and exposes operations to con-
trol (startTesting and stopTesting) and to observe
(getCoverage) the testable component.

<<interface>>
BITTester

BITTester ()

void startTesting(sessionID)
String startTesting()

void stopTesting()

String getCoverage (sessionID,
String getCoverage (sessionID,

covMode)

covMode, className)

Fig. 7. Interface of the tester component generated by BITGen.

The operation String startTesting () initiates a
test session and puts the testable component in the testing
mode, i.e., it turns on the probes of the testable compo-
nent. Control and data-flow data are collected by probes and
recorded into a trace file when the testable component is
executed in this mode. The return of this operation is an
identifier automatically generated for the test session initiated.
This identifier is also used to name the trace file generated
during the testable component execution. If the test session is
identified by 71234, for example, the trace file generated is
the following: trace_1234.trc.

The operation void startTesting(sessionID)
has the same effect as the operation mentioned before, but
it receives a session identifier instead of generating it. This
operation is useful mainly when the tester wants to perform
one coverage analysis for several test sessions recognized by
the same identifier. In this case, all information regarding the
testable component execution is stored into the same trace file.

The operation void stopTesting () finishes a test
session by turning off the probes. No information is recorded
about the testable component execution from this moment on.

The operation String getCoverage (sessionlID,
covMode) is used to achieve a coverage analysis of a test
session identified by the parameter sessionID. The report
is presented according to the parameter covMode (see Section
III-A3). In this particular operation, there is no difference
between the Operations and Interface coverage mode.
The coverage will be presented for all operations of the
component for both profiles.

The operation String getCoverage (sessionlID,
covMode, className) also generates a coverage analy-
sis. The difference from the previous operation is that a class
name may be specified as an input parameter. A coverage
analysis only for the specified class is generated when the
Classes profile is used. A coverage analysis is generated
only for the operations of the specified class as well when the
Interface profile is employed.

When one of the getCoverage operation is called,
the tester component (BITTester) finds the trace file as-
sociated with the test session identifier and sends it to the
CoverageAnalysis components of JaBUTi. This compo-
nent uses the XML file that contains the test requirements of
the testable component to calculate the coverage according to
the implemented criteria. Finally, BITTester uses the class
CoverageMode to format the coverage report according
to the requested profile (Component, Classes, Interface or
Operations).

94

BISTFaSC is intended to be used by component providers
to produce testable components for their clients. In this imple-
mentation, however, component users can also transform Java
COTS into testable components since BITGen instrumentation
is based on Java bytecode and the source is not required.

V. EXPLORATORY STUDY

An exploratory study was conducted to investigate the
feasibility of BISTFaSC and to understand the effects of
the testable component on a test session executed at the
user side. The investigation was performed considering the
Java implementation of the approach and a component called
XmlWriter was used. XmlWriter is an open source com-
ponent that is publicly available in the component provider
website!. This component is used to output XML code and the
user may layer other functionalities on top of the core writing,
such as on the fly schema checking, date/number formatting,
specific empty-element handling and pretty-printing.

A. Instrumentation

This study was performed from the point of view of a com-
ponent user, but first we had to transform XmlWriter into
a testable component using the BITGen tool. Figure 8 shows
the graphical user interface of BITGen. The tool requires the
name and the JAR file with the component to be instrumented,
and a local path to write the testable package and to store
the data collected by the probes (trace file). After pushing
the Generate button, BITGen instrumented XmlWriter
and generated a package called XMLWriter BIT. jar. This
package contains all classes, components and resources pre-
sented in Figure 6.

7[2 Generate BIT Component [=l &‘
Component name: Jarfile:
XmlWriter KmlWriter jar | Browse
Storage path:
C:\DevProjects\EclipSeProjects\XMLWriter\] | Browse
| Clear | | GenerateBIT Component | | Close |

Fig. 8. User Interface of BITGen

Once the regular component is fully developed and packed
along with its libraries and resources, the effort to transform it
into a testable component is really low. Considering this im-
plementation, the component provider only has to provide the
information required by BITGen and the testable component
is generated automatically.

B. Test Session

An Eclipse project was created to evaluate the testable ver-
sion of XmlWriter. The package XmlWriter_ BIT. jar
was included into the library references of the project and
a test scenario was created. The providers of XmlWriter

Ihttps://code.google.com/p/osjava/

also published a JUnit test set to test its operations. Instead
of creating new test cases to XMLWriter, we used this test
set, which is presented in Listing 1. The set up and a tear
down method was included in this investigation to control
and observe the testable component following the sequence
diagram presented in Figure 4. In the set up phase the tester
component is invoked to start a test session and in the tear
down it is called to stop the test session and to get a coverage
analysis.

The setUp method runs only once before the test cases
execution because of the annotation @BeforeClass. The
tester component BITTester is instantiated in Line 8 and
a test session is started in Line 9. The identifier of the test
session is recorded by the variable sessionID.

The tearDown method runs only once after the test
cases execution because of the annotation @AfterClass.
The test session is finished in Line 14 and the coverage
report is requested in Line 16. In this case, the coverage was
requested to be presented for the whole component profile
(CoverageMode . COMPONENT). The coverage returned as
a String and it was written in the output console of the
application (line 17).

Listing 1. Test set of XmlWriter.

01 public class XmlWriterTest{
02
03

private static BITTester bitTester;

04 private static String testSessionlID;

05

06 @BeforeClass

07 public static void setUp () {

08 bitTester = new BITTester();

09 testSessionID = bitTester.startTesting ();

10

11

12 @AfterClass

13 public static void tearDown () {

14 bitTester.stopTesting () ;

15 String coverage;

16 coverage=bitTester.getCoverage (testSessionID ,
CoverageMode .COMPONENT) ;

17 System.out. println (coverage);

18 }

19

20 @Test

21 public void testXmlWriter0l () throws IOException {

22 StringWriter sw = new StringWriter () ;

23 XmlWriter xw = new SimpleXmlWriter (sw);

24 xw. writeEntity ("unit”);

25 xw.endEntity () ;

26 xw.close () ;

27 assertEquals (sw. toString (), "<unit/>");

28 }

29

30 @Test

31 public void testXmlWriter02 () throws IOException {

32 StringWriter sw = new StringWriter () ;

33 XmlIWriter xw = new SimpleXmlWriter (sw) ;

34 sw = new StringWriter () ;

35 xw = new SimpleXmlWriter(sw);

36 xw. writeXmlVersion(”1.0”, "UTF-8");

37 xw.writeComment(”Unit test”);

38 xw. writeEntity ("unit”);

39 xw. writeEntity ("test”). writeAttribute ("order”,”1”).
writeAttribute (”language”,”english”).endEntity ();

40 xw. writeEntity ("again”). writeAttribute ("order”,”2”).
writeAttribute ("language”,”english”). writeEntity (”
andAgain”).endEntity () .endEntity () ;

41 xw.endEntity () ;

42 xw.close () ;

43

44 assertEquals (sw.toString (), getTest2Output()):

45 }

46

47 private String getTest2O0utput () {

95

48 return "<?xml version=\"1.0\" encoding=\"UTF—8\"?>" +

49 "<!—Unit test—>" +

50 "<unit>" +

51 "<test order=\"1\" language=\"english\"/>" +

52 "<again order=\"2\" language=\"english\"><
andAgain/</again>" +

53 Y</unit>";

54

55 }

Lines 20 to 55 show common JUnit test cases. These test
cases were created by the component provider and reused in
this investigation.

Table II presents the coverage analysis obtained from
the execution of the test set. The first column shows the
testing criteria considered during the coverage analysis. The
second column displays the amount of test requirements for
a specific criterion considering the whole component, i.e., it
is the sum of the number of test requirements generated for
all operations of all component classes. The third column
presents the amount of test requirements that was covered by
the test session execution considering the whole component.
The fourth column shows the coverage percentage, which is
calculated by CovTReq over TReq.

TABLE II. COVERAGE ANALYSIS OF XMLWRITER
Criterion | TReq | CovIReq | Coverage
All-nodes 100 33 33%

All-edges 84 23 27%
All-uses 238 56 23%

The coverage achieved is low for all criteria. Listing 2
shows an excerpt of the code used to get the coverage report
at different granularity levels (presentation profiles). In these
cases, the tester can investigate which classes and/or operations
are not being exercised satisfactorily.

Listing 2. Script used to get different presentations of the coverage

01 coverage = bitTester.getCoverage(testSessionlID ,
CoverageMode . ALL_CLASSES) ;

02 System.out.println(coverage);

03

04 coverage = bitTester.getCoverage (testSessionlD ,
CoverageMode . ALL_OPERATIONS) ;

05 System.out.println(coverage);

06

07 coverage = bitTester.getCoverage (testSessionlD ,
CoverageMode . INTERFACE_OPERATIONS, ”SimpleXmlWriter”);

08 System.out.println(coverage);

Table III presents the coverage obtained for each class
of the component (Lines 1 and 2 of Listing 2). The table
shows the coverage percentage and the number of covered test
requirements over the number of test requirements (CovTRe-
q/TReq) for each class and criterion. This report shows that
the coverage reached for the class Xm1Utils is practically
0% for all criteria. XmlUtils is not exercised probably
because SimpleXmlWriter uses only one of its operations.
That is why the coverage of the whole component is too
low, even when the coverage for SimpleXmlWriter and
AbstractXmlWriter are reasonable.

TABLE III. COVERAGE ANALYSIS OF XMLWRITER CLASSES
Classes All-nodes All-uses All-edges
SimpleXmlIWriter 72% (29/40) | 70% (22/31) | 66% (56/84)
AbstractXmlWriter 50% (3/6) 100% (1/1) -
XmlUtils 1% (1/54) 0% (0/52) 0% (0/154)

Table IV presents the coverage obtained for each operation
of SimpleXmlWriter (Lines 7 and 8 of Listing 2). This
table shows only the coverage percentage for each operation
and criterion. The sign "-" indicates the absence of test
requirements for that criterion. This usually happens when the
method has only one node. Then, there are no test requirements
for edges and uses. The tester can use this report to see which
operations were not exercised and which operations need to
be extensively tested.

TABLE IV. COVERAGE ANALYSIS OF SIMPLEXMLWRITER
OPERATIONS
Operations All-nodes | All-uses | All-edges

66%
100%

50%
100%
87% 77% 76%
0% 0% 0%
0% - -
100% - -
0% - -
100% 100% 100%
100% 100% 100%
0% - -
100% - -
100%
66%
0%
80%

30%
100%

close
closeOpeningTag
endEntity
getDefaultNamespace
getWriter

openEntity
setDefaultNamespace
writeAttribute
writeAttributes
writeCData
writeChunk
writeComment
writeEntity

writeText
writeXmlVersion

50% 44%

50% 55%

The component user has not spent much effort to use the
testing facilities of the testable component to conduct structural
testing activities. Considering this particular implementation
and the JUnit framework, the user had to add only 12 extra
lines (Lines 06 to 10 and Lines 12 to 18) into the test set code.

C. Performance Overhead Analysis

We performed an analysis to measure the performance
overhead brought by the testable component probes. We
measured the time it took to execute the test set presented
in Listing 1 100 times. First, we tested the regular ver-
sion of XmlWriter. Next, we executed the test set against
XmlWriter_ BIT inregular mode, i.e., the startTesting
operation was not invoked then the probes were deactivated.
Finally, we tested Xm1Writer_BIT in testing mode, i.e., the
startTesting operation was called before the probes were
activated. Table V shows the results of this analysis.

TABLE V. ANALYSIS OF THE PERFORMANCE OVERHEAD
Component Time Overhead
XmlWriter 44 ms 0%
XmlWriter_BIT (probes off) 47 ms 7%
XmlWriter_BIT (probes on) 460 ms 1045%

The overhead brought by the testable component is mini-
mal when the probes are off. When the probes are on, however,
the component execution is 10 times slower. Even with this
great overhead brought by the probes when they are on,
we believe that it is not significant in general because the
probes will be on only when the component is under test. The
probes are turned off when the component is integrated in an
operational environment and in this case the overhead is lower
and have less significant impact on the overall performance.
However, it may be critical to many real time systems.

96

D. Size Overhead Analysis

The testable components generated by BITGen have their
size enlarged by extra code and libraries. The component
classes are extended by the probes inserted during instrumenta-
tion. Table VI shows a comparison between the size (in bytes)
of XmlWriter classes before and after the instrumentation.

TABLE VI ANALYSIS OF THE SIZE OVERHEAD
Classes Size before Size after Overhead
SimpleXmlWriter 4531 5515 22%
AbstractXmlWriter 1417 1795 26%
XmlUtils 3739 5027 34%

[All classes [9687 [12337] 27% |

SimpleXmlWriter presents the smallest overhead of
the Component because it has 15 short operations which
does not require too many probes to be instrumented.
AbstractXmlWriter has only 4 small operations which
are usually calls to abstract or interface operations. The size
overhead presented by this class is in the average considering
all classes (27%).

XmlUtils presents the greatest overhead size of the
component. Xm1Ut i1s is smaller and has less operations than
SimpleXmlWriter, but its operations are bigger and have
more control flow deviations and variable usage. This makes
a difference regarding the test requirements generated for the
structural testing criteria (see Table III). Xm1Utils generates
more test requirements than SimpleXmlWriter considering
all criteria. The more test requirements are generated for a class
the more probes are required to trace its execution.

The size overhead is not so important when components are
used in enterprise environments where space and memory are
usually widely available. However, it may be crucial when it
is embedded into devices with space and memory restrictions.

Regarding size overhead, the major problem of the testable
components generated by BITGen is the size of the libraries
and components required to perform the coverage analysis.
Coverage analysis requires components of the JaBUTi tool and
libraries to manipulate XML data and Java bytecode. These
libraries and components add at least IMB to the testable
component size. Again, it is not a significant overhead in
enterprise environments, but it is relevant for restricted devices.

The overhead problem brought by extra components and
libraries, however, is not related to the generic approach
BISTFaSC. The restriction is imposed by its Java implemen-
tation which could be improved by reducing the number of
library dependencies. The alternative to overcome this situation
is to use two versions of the component: a testable version to
conduct testing activities and a regular version to embed into
devices with restrictions.

VI. RELATED WORK

Several approaches have been proposed in the literature
as an attempt to improve component testability and support
testing activities on the user side. The already mentioned
BIT approaches (see Section II-B) introduce testing facili-
ties into software components to control state machines and
execute/generate test cases, validate contracts and invocation

sequences, for example [9], [10], [11], [22], [23], [12], [13],
[20].

The BISTFaSC approach is similar to most of these ap-
proaches since it also introduces testable and tester components
associated. Testable components have testing facilities that can
be turned on and off. The difference is that BISTFaSC intro-
duces testing facilities to support structural testing while the
other approaches usually support specification-based testing.

Testable components are intended to generated by the
component providers in classical BIT approaches and also
in BISTFaSC. When COTS are not equipped with testing
facilities by their providers, however, component users can use
the Java implementation of the approach to instrument Java
COTS. This process is similar to the approach supported by
the BIT/J library [22].

Teixeira et. al [27] proposed a tool based on JaBUTi [26]
to support the structural testing of Java components. The
component provider can instrument the component and create
test cases for it. The component user receives the instrumented
component that is packed with test cases, test case descriptions
and coverage information. The user thus can use the tool
to create test cases using the JUnit framework and get a
coverage analysis on the test set execution. This coverage can
be compared to the coverage reached by the provider during
development time and test cases packed with the component
can be reused.

There are many differences between BISTFaSC and the
tool proposed by Teixeira et. al [27], although they are meant to
support structural testing of software components. BISTFaSC
follows the concepts of BIT and defines a tester component
to the testable component. Moreover, the testing facilities
that support structural testing activities are embedded into the
component code and libraries therefore no supporting tool is
required.

Eler et. al and Bartolini et. al proposed an approach to
produce testable services with structural testing capabilities
[28], [29]. Their approach is similar to BISTFaSC because
they propose to transform regular services into testable services
by instrumentation. In this case, however, the testable service
has to implement the operations to define the boundaries
of a test session and to get the coverage information. The
coverage information is generated by a third party service
instead of being calculated by the testable service itself. The
testable components of BISTFaSC do not have their operations
augmented and the testing facilities are implemented by the
tester component associated. Moreover, the coverage informa-
tion is internally calculated then no third party component is
required.

VII. CONCLUSION

This paper presented a BIT solution to introduce facilities
into software components at the provider side to support
structural testing activities at the user side. The approach is
generic and it is called BISTFaSC. A Java implementation of
the approach was presented and used to perform an exploratory
study by generating Java testable components of third party
components. The exploratory study showed that the compo-
nent provider does not have much effort to generate testable

97

components and the component user has only to add a few
extra code into their test class to take advantage of the testing
facilities provided by testable components.

The performance overhead brought by the probes added
during instrumentation is not significant when the probes are
off (regular mode), but it may be significant for real time
applications. The size overhead is also not relevant considering
enterprise environments, but it may be significant if the target
environment is a device with space and memory restrictions.

We believe this approach can bring benefits to CBSE, since
it allows users applying both specification and implementation
based testing techniques. Combining these two testing tech-
niques may provide higher confidence to component providers
and users.

Moreover, there are several software engineering ap-
proaches in which components are used as the building blocks
of applications, such as object oriented frameworks, service-
oriented computing and software product lines. Testable com-
ponents can contribute with the testing activities conducted for
all of these type of applications.

The coverage information alone cannot help testers to
improve their test set to increase the coverage when it is low. It
only gives a clue of how much of the component was exercised
during a test session, which is valuable information itself. As
future work, we intend to propose metadata to help testers to
understand which test cases should be created to improve the
coverage achieved, but without revealing the source code. The
idea is to use test metadata as suggested by Harrold et. al [7]
and used by Eler et. al [28] for testable services.

We also intend to explore how structural testing facilities
could be used to perform component monitoring and regression
test case selection and reduction. Moreover, we would like to
perform more rigorous evaluation of the approach with bigger
components. We also want to evaluate the usability of the
approach at the user and at the provider side.

ACKNOWLEDGMENT

The authors would like to thank the Brazilian funding
agency CNPq for its support.

REFERENCES

C. Szyperski, Component Software, Beyond Object-Oriented Program-
ming, ser. Component Software. Addison-Wesley, 2002.

J. Cheesman and J. Daniels, UML Components: A simple process for
specifying component-based software. Addison-Wesley, 2000.

S. Beydeda, “Research in testing cots components - built-in testing
approaches,” in Proceedings of the ACS/IEEE 2005 International
Conference on Computer Systems and Applications, ser. AICCSA ’05.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 101-vii.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1249246.1249567

E. J. Weyuker, “Testing component-based software: A cautionary tale,”
IEEE Software, vol. 15, no. 5, pp. 54-59, 1998.

M. Bozkurt, M. Harman, and Y. Hassoun, “Testing and verification
in service-oriented architecture: a survey,” Software Testing,
Verification and Reliability, pp. n/a-n/a, 2012. [Online]. Available:
http://dx.doi.org/10.1002/stvr.1470

IEEE, “IEEE Standard Glossary of
ing Terminology,” Tech. Rep., 1990.
http://dx.doi.org/10.1109/IEEESTD.1990.101064

Software
[Online].

Engineer-
Available:

(71

(8]

[10]

(11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

M. J. Harrold, A. Orso, D. Rosenblum, G. Rothermel, and M. L.
Soffa, “Using component metadata to support the regression testing
of component-based software,” Tech. Rep. GIT-CC-00-38, 2000.

Y. Wang, G. King, and H. Wickburg, “A method for built-in tests in
component-based software maintenance,” in Proceedings of the Third
European Conference on Software Maintenance and Reengineering.
Washington, DC, USA: IEEE Computer Society, 1999, p. 186.

C. Atkinson and H. gerhard Gros, “Built-in contract testing in model-
driven, component-based development,” in In ICSR-7 Workshop on
ComponentBased Development Processes, 2002.

Y. Wang and G. King, “A european COTS architecture with built-
in tests,” in Proceedings of the 8th International Conference Object-
Oriented Information Systems. London, UK: Springer-Verlag, 2002,
pp. 336-347.

J. Hornstein and H. Edler, “Test reuse in cbse using built-in tests,” 2002.

H.-G. Gross, Component-Based Software Testing with UML. Springer,
2005.

L. C. Briand, Y. Labiche, and M. M. Séwka, “Automated, contract-based
user testing of commercial-off-the-shelf components,” in Proceeding of
the 28th international conference on Software engineering. New York,
NY, USA: ACM, 2006, pp. 92-101.

G. J. Myers, C. Sandler, T. Badgett, and T. M. Thomas, The Art of
Software Testing. John Wiley & Sons, Inc., Hoboken, New Jersey,
2004.

B. Beizer, Software testing techniques (2nd ed.). New York, NY, USA:
Van Nostrand Reinhold Co., 1990.

H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage
and adequacy,” ACM Computing Surveys (CSUR), vol. 29, no. 4, pp.
366-427, 1997.

S. Rapps and E. J. Weyuker, “Selecting software test data using data
flow information,” IEEE Transactions on Software Engineering, vol. 11,
no. 4, pp. 367-375, Apr. 1985.

S. Beydeda and V. Gruhn, “State of the art in testing components,”
in International Conference on Quality Software. IEEE Computer.
Society Press, 2003, pp. 146-153.

C. Atkinson, J. Bayer, and D. Muthig, “Component-based product
line development: the kobra approach,” in Proceedings of the first
conference on Software product lines : experience and research
directions: experience and research directions. Norwell, MA, USA:

98

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Kluwer Academic Publishers, 2000, pp. 289-309. [Online]. Available:
http://dl.acm.org/citation.cfm?id=355461.357556

H. S. Lima, F. Ramalho, P. D. L. Machado, and E. L. Galdino,
“Automatic generation of platform independent built-in contract testers.
Simposio Brasileiro de Componentes, Arquiteturas e Reutilizacao de
Software,” 2007.

D. Brenner, C. Atkinson, B. Paech, R. Malaka, M. Merdes, and
D. Suliman, “Reducing verification effort in component-based software
engineering through built-in testing,” in Proceedings of the 10th IEEE
International Enterprise Distributed Object Computing Conference.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 175-184.
F. Barbier, N. Belloir, and J. M. Bruel, Chapter: Incorporation of
Test Functionality into Software Componentes. In book: COTS-Based
Software Systems. Springer, 2003.

J.-M. Bruel, J. Aradjo, A. Moreira, and A. Royer, “Using aspects to
develop built-in tests for components,” in The 4th AOSD Modeling With
UML Workshop, 2003.

W. T. Tsai, J. Gao, X. Wei, and Y. Chen, “Testability of software
in service-oriented architecture,” in Proceedings of the 30th Annual
International Computer Software and Applications Conference. Wash-
ington, DC, USA: IEEE Computer Society, 2006, pp. 163-170.

L. O’Brien, P. Merson, and L. Bass, “Quality attributes for service-
oriented architectures,” in Proceedings of the International Workshop on
Systems Development in SOA Environments. Washington, DC, USA:
IEEE Computer Society, 2007, p. 3.

A. M. R. Vincenzi, M. E. Delamaro, J. C. Maldonado, and W. E. Wong,
“Establishing structural testing criteria for java bytecode,” Software
Practice & Experience, vol. 36, no. 14, pp. 1513-1541, 2006.

V. S. Teixeira, M. E. Delamaro, and A. M. R. Vincenzi, “Fatesc - uma
ferramenta de apoio ao teste estrutural de componentes,” in Sessdo de

ferramentas - XXI SIMPOSIO BRASILEIRO DE ENGENHARIA DE
SOFTWARE. New York, NY, USA: ACM Press, 2007b, pp. 7-12.

M. Eler, A. Bertolino, and P. Masiero, “More testable service com-
positions by test metadata,” in 6th IEEE International Symposium on
Service Oriented System Engineering, vol. 1, no. 1. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 204 -213.

C. Bartolini, A. Bertolino, S. Elbaum, and E. Marchetti, “Bringing
white-box testing to service oriented architectures through a service
oriented approach,” Journal of Systems and Software, vol. 84, pp. 655—
668, April 2011.

