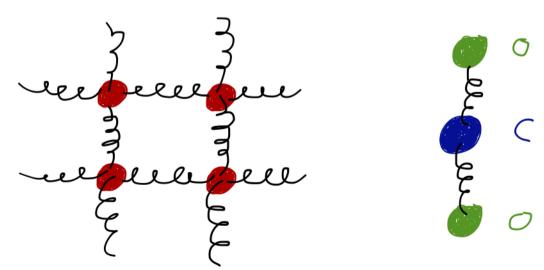
Oscilações em duas dimensões

Roberto Ortiz

Professor Livre-Docente EACH – USP

Condições:

- A força resultante é decomposta em 2 direções perpendiculares
- O movimento do objeto depende das condições iniciais (posição e velocidade)
- Exemplos: átomos em uma rede cristalina, molas acopladas



• Caso I: a constante elástica k é igual nas 2 dimensões:

Neste caso, a frequência angular de oscilação ω será a mesma, mas pode haver uma <u>diferença de fase</u> entre as oscilações nas direções <u>x</u> e <u>y</u>.

Conforme já vimos, a solução da equação diferencial é uma combinação de senos e/ou cosenos. Escrevemos as equações na posição em 2 direções perpendiculares

$$x(t) = A \sin \omega t$$

$$y(t) = B \sin(\omega t + \delta)$$

Onde δ é a diferença de fase nas direções \underline{x} e \underline{y} e A e B são as amplitudes do movimento, que podem ser iguais ou diferentes.

A diferença de fase δ nas direções \underline{x} e \underline{y} vai depender das <u>condições iniciais</u> do sistema, tais como sua posição e/ou velocidade inicial.

Polarização linear

• Se os movimentos nas direções \underline{x} e \underline{y} estiverem em fase: $\delta = 0$

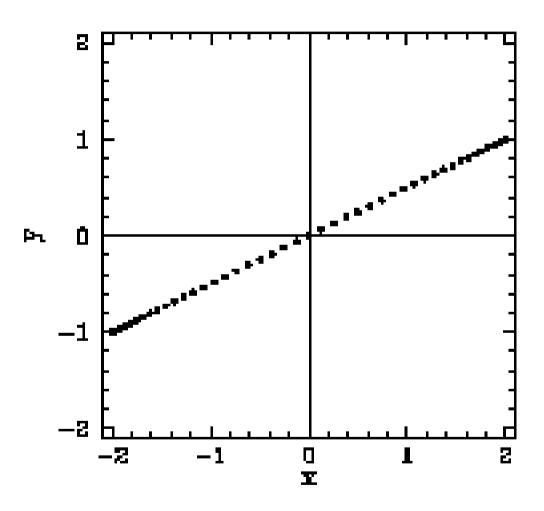
$$y = (B / A) x$$

A equação acima é de uma reta que passa pela origem e de inclinação BIA.

• Se a diferença de fase for: $\delta = \pi$:

$$y(t) = B \sin (\omega t + \pi) = -B \sin (\omega t)$$
$$y = -(B/A) x$$

Exemplo: A = 2, B = 1, $\delta = 0$



Questão: como seria o movimento se $\delta = \pi$?

Polarização elíptica (ou circular)

• Quando $\delta = \pi/2$ os movimentos nas direções <u>x</u> e <u>y</u> estão em quadratura:

$$y(t) = B \sin (\omega t + \pi/2)$$

$$y(t) = B [\sin(\omega t)\cos(\pi/2) + \sin(\pi/2)\cos(\omega t)]$$

$$y(t) = B \cos (\omega t)$$

Se combinarmos com a equação do movimento na direção <u>x</u>, teremos:

$$(x/A)^2 = \sin^2(\omega t)$$

 $(y/B)^2 = \cos^2(\omega t)$
 $(x/A)^2 + (y/B)^2 = \sin^2(\omega t) + \cos^2(\omega t) = 1$

Logo:

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$$

Esta é a <u>equação da elipse</u>, com centro na origem e semieixos *A* e *B*.

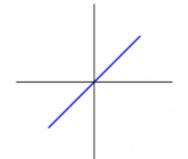
No caso em que A = B temos a <u>equação da circunferência</u> e a polarização é **circular**.

O movimento harmônico para diversas diferenças de fase

$$x(t) = A \sin \omega t$$

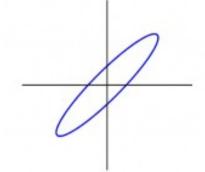
$$y(t) = B \sin(\omega t + 0)$$

Sentido: vai-e-vem



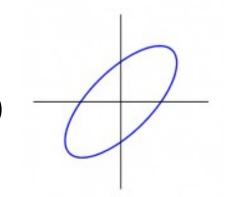
$$x(t) = A \sin \omega t$$

$$y(t) = B \sin (\omega t + \pi/8)$$



$$x(t) = A \sin \omega t$$

$$y(t) = B \sin (\omega t + \pi/4)$$

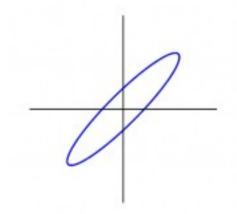


Examinemos o <u>sentido</u> do movimento:

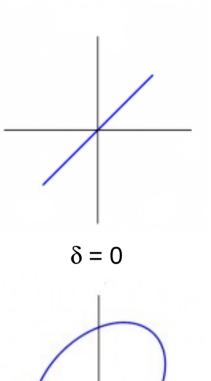
$$x(t) = A \sin \omega t$$

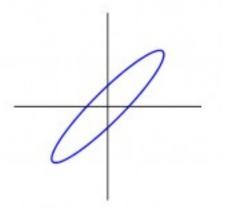
$$y(t) = B \sin(\omega t + \delta)$$

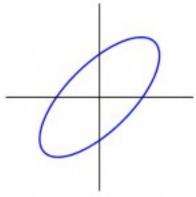
Suponhamos, por exemplo: $\delta = \pi/8$

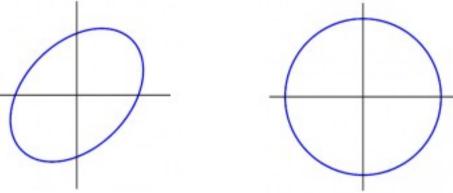


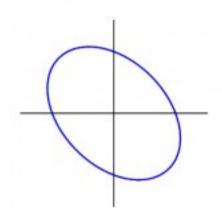
ωt	$x/A = \sin(\omega t)$	$y/B = \sin(\omega t + \pi/8)$
0	0	0,38
π/8	0,38	0,71
π/4	0,71	0,92
3π/8	0,92	1,00
π/2	1,00	0,92







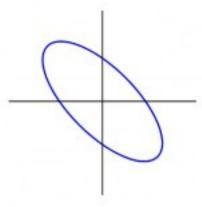


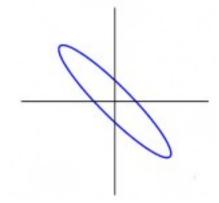


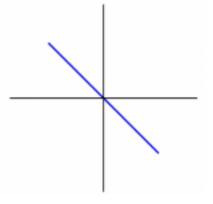
$$\delta = 3\pi/8$$

 $\delta = \pi/2$

 $\delta = 5\pi/8$







$$\delta = 3\pi/4$$

 $\delta = 7\pi/8$

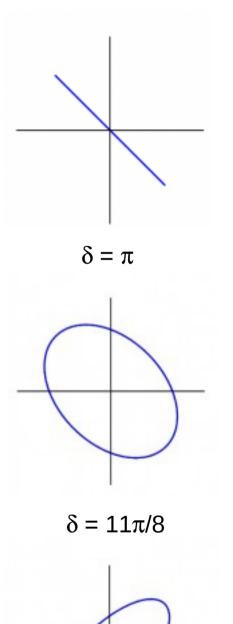
$$\delta = \pi$$

Se a diferença de fase for $0 < \delta < \pi$:

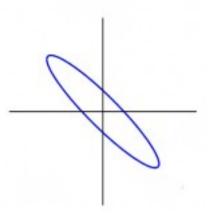
O corpo gira no sentido horário

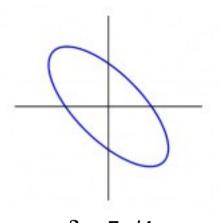
Se a diferença de fase for $\pi < \delta < 2\pi$:

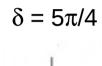
O corpo gira no sentido anti-horário

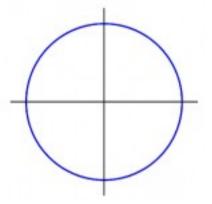


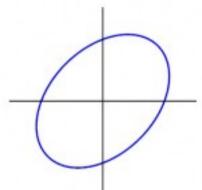
 $\delta = 7\pi/4$





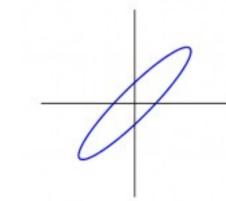


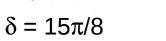


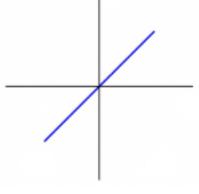


$$\delta=3\pi/2$$

 $\delta=13\pi/8$



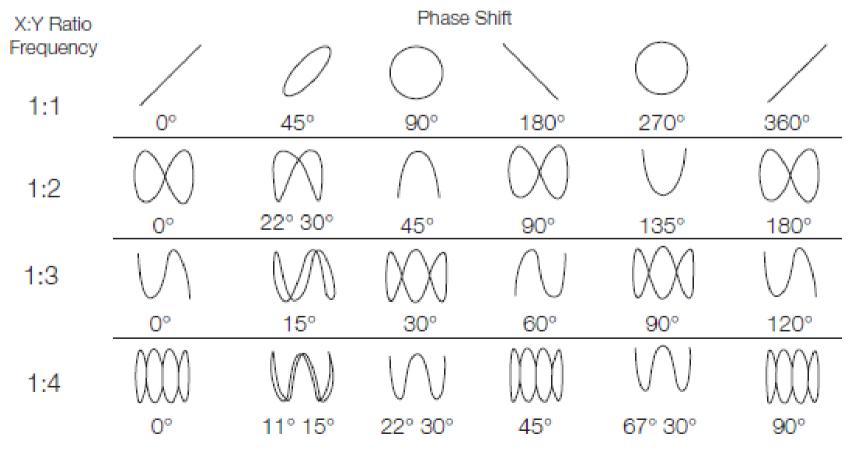


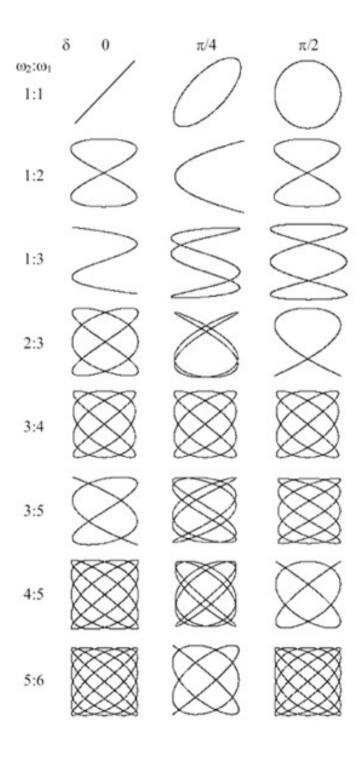


$$\delta = 2\pi$$

• Caso II: a constante elástica k é diferente nas 2 dimensões: k_1 e k_2 .

Neste caso, haverá duas frequências angulares de oscilação, uma para cada direção. O movimento dependerá do valor relativo de ω_1 e ω_2 .





- Se a razão ω_1/ω_2 não for um número racional então a figura não "se fecha".
- Diferentes razões de amplitudes A₁/A₂
 apenas esticarão as figuras na direção <u>x</u>
 ou <u>y</u>.

Fim