
Tutorial: DB-Main 9.1.1

(based on DB-Main help)

Profa. Dra. Sarajane Marques Peres

www.each.uspnet.usp.br/sarajane



� Este tutorial foi originalmente criado para a versão 9.1.1 do Db-main. 

� Contudo, o produto gerado é compatível à versão 9.1.6 e a forma de trabalho na 
ferramenta não foi alterada (pelo menos não para as funcionalidades usadas na 

construção do .lun deste tutorial).

� Se você encontrar algum problema no tutorial, por favor, escreva para 
sarajane@usp.br, e coloque no assunto da mensagem: [Tutorial DBMain] – Problema 

encontrado.



DB-Main 9.1.1 – General Information

� General Purpose Modeling Tool For Database Applications 
Engineering
� supporting toolset for system engineering;

� modeling tool development environment – Computer Aided 
Software Engineering  (CASE) tool.

� A product of the Laboratory of Database Application � A product of the Laboratory of Database Application 
Engineering University of Namur.

� Developed and distributed by: REVER S.A. (Belgium)

� Web Site:  www.db-main.eu Support:  dbm@rever.eu Basic
file extension: .lun

� Release 9.1.1 – February, 2012.



Modelling funcionalities (examples)

� This tool offers support for some forward and reverse
engineering activities.

� Foward engineering

� A generic, wide-spectrum representation model for conceptual, � A generic, wide-spectrum representation model for conceptual, 
logical and physical objects; 

� A graphical representation of ERA Schemas, UML Class, Activity and 
Use Case Diagrams; 

� A generic model that describes procedural components of 
information systems at various abstraction levels as well as their 
relations; 

� Semantic and technical semi-formal annotations attached to each 
specification object;



Modelling funcionalities (examples)

� Reverse engineering

� Code parsers extracting physical schemas from SQL, COBOL, 

CODASYL, IMS, XML DTD and RPG source programs; 

� Interactive and programmable source text analyzers that can

be used, a.o., to detect complex programming patterns or

clichés in source texts, and to build data flow diagrams

through program variables; 



Modelling funcionalities (examples)

� CASE - Typical features

� A toolbox of semantics-preserving transformational operators 

intended to carry out in a systematic way such activities as 

conceptual normalization, development of optimized logical 

and physical schemas from conceptual ones, and conversely and physical schemas from conceptual ones, and conversely 

(i.e. reverse engineering); 

� A set of assistants. An assistant is a kind of expert in a specific 

kind of tasks, or in a class of problems. It is intended to help 

the analyst to carry out frequent, tedious or complex tasks.



Modelling funcionalities (examples)

� Meta level functions

� Java Interface for DB-MAIN (JIDBM) language and the Voyager 
2 allow the engineer (analyst or method engineer) to develop 
new functions that can be seamlessly incorporated into the 
tool;tool;

� Extension of the repository : new properties can be 
dynamically added and managed through plug-ins;

� Methodological customization:  the tool is methodologically 
neutral and can assist the analyst in following a large spectrum 
of methodologies.



Basic Interface Views

Our project

to choose a *.LUM file containing a method 

to be followed during the project 



Basic Interface Views

Engineering methods must be written in MDL (Method Description Language) and compiled

with the external MDL compiler to produce a *.LUM file. This file can be associated to the 

project at creation time (File/New project menu item). If no method is specified, the default

one allows to do anything.



Basic Interface Views

The Property Box (or similar) 
with context description must
be completed (in the course
student project).



Object: Notes
A note is a kind of post-

it that can be inserted

in a schema or 

attached to some 

objects of a schema.

The links between a 

note and its owners are 

represented 

Simplified requirements system.

represented 

by dotted lines, except 

for those associated to 

schemas.

No menu NEW.

Use in your project

in order to improve

the specification

legibility !!



Inserting Text Information

System documentation!!

Double Click!



Building a Use Case Diagram



Linking the new schema to other object



Use Case – Toolbar

Use Case 

Generalization

Include 

Relationship

Extend

Relationship

Actor

Use Case

Association

Actor

Generalization



Use Case - Definitions

� Use Case: A use case is a kind of classifier representing a 

coherent unit of functionality provided by a system, a 

subsystem, or a class.

� a use case generalization from a use case A to a use case B indicates 

that A is a specialization of B (is a kind of relation). 

� Actor: an actor represents a coherent set of roles that users 

can play when interacting with a system. An actor materializes 

any resource (man, machine, ...) that can be associated with 

an action.

� an actor generalization from an actor A to an actor B indicates that 

an instance of A can communicate with the same kinds of use-case 

instances as can do an instance of B (is a kind of relation). 



Use Case - Definitions

� These are also kinds of relations:

� an extend relationship from a use case A to a use case B

indicates that an instance of B may be augmented by the 

behavior specified by A; 

� an include relationship from a use case A to a use case B� an include relationship from a use case A to a use case B

indicates that an instance of A will also contain the behavior 

specified by B; 

� an association between a use case and an actor indicates the 

participation of an actor in a use case.



Use Case – building the diagram

Double Click!

Use Case Diagram
Developing Enviroment



Use Case - elements

To name the association, 
click on the middle in 
the straigth-line.



Building an Activity Diagram

Activity Diagram
Developing Enviroment



Activity Diagram – Toolbar

SignalHorizontal Vertical Signal

Decision State

Object

Signal

Sending

Horizontal 

Synchronization

Vertical

Synchronization

Final State

Initial State

Action State

Signal

Receipt

Control

Flow

Object

Flow



Activity Diagram - definitions

� Objects are used as input or output of action states.

� an internal object can be a data type, a variable, a constant or any object 
that is known by the action states of the schema but that is unknown 
outside; 

� an external object is defined in a data schema and used in a UML Activity 
Diagram. Such is the case of entity types, attributes, collections or rel-
types. 

� State (or object state) is a picture of an object at a precise time. In 
fact, an object that can be transformed during the process described 
by the activity diagram can be in a different state before and after 
one of the actions. 
� For instance, a glass can be empty before the action of filling it, and full 

after that action. Since only the empty glass can be put in a cupboard and 
only the full glass can be drunk, it is important, for other actions, to 
distinguish the various states of the object.



Activity Diagram - definitions

� Action state is a shorthand for a state with an entry action and at least one 
outgoing transition involving the implicit event of completing the entry 
action. 

� Initial state is a special kind of action state that represents the beginning of 
an activity diagram. 

� Final state is a special kind of action state that represents the completion 
of an activity diagram.

�

� Synchronization state, either horizontal or vertical allows to synchronize 
concurrent regions. It is used in conjunction with forks and joins to insure 
that one region leaves a particular state before another region can enter a 
particular state. 

� Decision state is expressed when conditions are used to indicate various 
possible transitions that depend on boolean conditions. 



Activity Diagram - definitions

� Signal sending shows a transition sending a signal. 

� Signal receipt shows a transition receiving a signal. 

� Control Flow: to open a dialog box for selecting the action 
state(s) implied in a control flow; state(s) implied in a control flow; 

� a control flow indicates the order of execution of action states;

� Object Flow: to open a dialog box for selecting the object(s) 
implied in a object flow;

� an object flow indicates input object states or output objects 
(internal or external) of an action state;



Activity Diagram - elements

Decision

StateObject

Vertical

Synchronization

Initial State

Signal

Receipt

Control

Flow

Object

Flow

Signal

Sending

Horizontal 

Synchronization

Final State

Action State



Building an Entity-Relationship Model

Labeling the schema



Entity Relationship Model – Toolbar

New

Entity Type

Relationship

Type
First Attribute

Next Attribute

New

Identifier
Role / Rel-type

Link

Group

Processing Unit

Collection



Entity Relationship Model - definitions

� Entity type materializes a class of entities that represent 

objects. These objects can be real world abstract or concrete 

entities. They can also be abstract or concrete data structures, 

such as records, tuples or segments. An entity type can have 

any number (including zero) of attributes.

� An entity type can be a subtype of one or several other entity types.� An entity type can be a subtype of one or several other entity types.

� Rel-type (relationship type) represents a class of associations 

between entities. It has two or more roles and any number 

(including zero) of attributes. 

� A role is the partner of an entity type.



Entity Relationship Model - definitions

� An attribute represents a property of entities or associations 

of the same type. It is either atomic or compound; an atomic 

attribute has a domain of values; each attribute is subject to a 

cardinality constraint [min-max]. This constraint allows to 

specify optional/mandatory (min = 0 or 1) attributes as well as 

single-valued/multivalued (max = 1 or > 1) attributes. single-valued/multivalued (max = 1 or > 1) attributes. 

� The possible domains of values are listed below:

� boolean;  char;  compound;  date;  float;  index;  numeric;  sequence;  

varchar;  object type; 

� user-defined:  can be atomic or compound, it can be associated with 

several attributes (in the attribute properties dialog box, select user-

defined type in the type combo-box and then the user-defined domain 

in the new combo-box). A user-defined domain is defined for the 

current project.



Entity Relationship Model - definitions

� A multivalued attribute has a collection type. The possible 

collection types are listed below:

� set: the values of the attribute are distinct and there is no ordering 

relation between them. 

� bag: the values are not necessarily distinct and there is no ordering � bag: the values are not necessarily distinct and there is no ordering 

relation between them. 

� unique list: the values are distinct and ordered. 

� list: the values are not necessarily distinct but they are ordered. 

� unique array: the values are distinct and ordered. Each value is 

stored into a cell and a cell can be empty. 

� array: the values are not necessarily distinct but they are ordered. 

Each value is stored into a cell and a cell can be empty. 



Entity Relationship Model - definitions

� Role is a place holder in a rel-type. It is played by one or 

several entity types (mono-ET role or multi-ET role) and is 

given a cardinality constraint that states the minimum and 

maximum number times connected entities can play this role.

� Group is associated to a parent object (entity type, rel-type or 

multivalued compound attribute). A group is a set of attributes 

and/or roles and/or other groups that play some functions 

together for the parent object. The possible functions of a 

group include: identifier, coexistence, exclusive, at-least-one, 

user constraint and access key.



Entity Relationship Model - definitions

� Collection is a repository of entity types. In logical and 

physical schemas, collections can be used to represent 

files and the like.

� In a data schema (ER or UML Class Diagram), an anchored � In a data schema (ER or UML Class Diagram), an anchored 

processing unit is any dynamic or logical component of 

the described system that can be associated with a 

schema, an entity-type or a relationship type.



Entity Relationship Model - elements

Entity Type

Identifier

Role / Rel-type

Link

GroupProcessing Unit

Collection

Obs: entity without

primary key ?!?!?!

Relationship

Type

Link

How to ...



Entity Relationship Model – how to



Entity Relationship Model – how to

If the cluster has the disjoint property, the new group is submitted to 

the exclusive constraint.

If the cluster has the total property, the new group is submitted to the 

at-least-one constraint.

If the cluster has the partition property, the new group is submitted to 

both the exclusive and the at-least-one constraints (i.e. the exactly-one 

constraint).



Entity Relationship Model – how to

Choose an attribute or a relationship type and

create the group.

Choose an entity or a relationship type and

associate the unit processing.

Os objetos que serão criados no SGBD como triggers, views, etc.



Entity Relationship Model – how to

Link/association between entity and relationship types.

Reading:

A bibliography item can appears 0 ou 1 

time in the borrow event (relationship), 

i.e., a bibliography item  can be borrowed

or not.

ATENÇÃO!!!!!

or not.

A client can appears 0 ou N times in the

borrow event (relationship), i.e., a client

can borrow some (or several) items or not.

Classic view

1N

É a notação MIN-MAX – pg. 52 – Navathe!



Entity Relationship Model – how to

Mark the parent attribute

and choose, in the toolbar,

the option “First Attribute”.

Mark the attribute and

choose, in the toolbar,

the option “Next Attribute”.



Building an Relation Model through an

automatic mapping (1)

Do not execute the mapping with the original ER
model.  The mapping will replace the ER model
by the relational model. We cannot redo!!!!!!
Create a schema copy!!!!!!!!!!!!!!!!!!!



Building an Relation Model through an

automatic mapping (2)

Double Click!Double Click!



Building an Relation Model through an

automatic mapping (3)

Analysing!!!!



Relation Model -automatic mapping –

analysing ...

ER Model Relational Model

Compound

Attribute
Primary key =  index!

Multi-valored

Attribute

Foreign key

“equ” – total:  All

Bibliography items

are associated to 

Samples.



Relation Model -automatic mapping –

analysing ...

ER Model Relational Model

Relationship 1-N

From

Generalization

Relationship.



Relation Model -automatic mapping –

analysing ...

ER Model Relational Model

Relationship N-M

The symbol acc (for access key) 

is associated with each 

identifier and each foreign key.

equ � 1-N � the participation is 

required.

ref � 0-N � the participation is not

required



Relation Model -automatic mapping –

analysing ...
Relationship 1-N (0-N)

With specific feature – unit processing.

The primary

ER Model

The primary

key is only one

of the foreign

keys.

Relational Model



Relation Model -automatic mapping –

analysing ...
Generalization - Specialization.

ER Model Relational Model

Ref: Foreign key – not total: Some 

Bibliography Items are Periodicals, 

others are Books.

If the cluster has the disjoint property, the new group is submitted to the exclusive constraint.

If the cluster has the total property, the new group is submitted to the at-least-one constraint.

If the cluster has the partition property, the new group is submitted to both the exclusive and the at-

least-one constraints (i.e. the exactly-one constraint).



Text Standard



Text Standard

Index!Index!



Data Dictionary

Only in the text view mode.



Data Dictionary



Generating the SQL Script



Generating the SQL Script

FIM!!


