Fractal Geometry of Airway Remodeling in Human Asthma

Stacey R. Boser, Hannah Park, Steven F. Perry, Margaret G. Ménache, and Francis H. Y. Green

Dalhousie University, Halifax, Nova Scotia; Respiratory Research Group, University of Calgary, Calgary, Alberta, Canada; Morphology and Systematics, Institut für Zoologie, Universität Bonn, Bonn, Germany; and University of New Mexico, School of Medicine, Pediatrics Division, Albuquerque, New Mexico

Rationale: Airway wall remodeling is an important aspect of asthma. It has proven difficult to assess quantitatively as it involves changes in several components of the airway wall.

Objective: To develop a simple method for quantifying the overall severity of airway wall remodeling in asthmatic airways using fractal geometry.

Methods: Negative-pressure silicone rubber casts of lungs were made using autopsy material from three groups: fatal asthma, nonfatal asthma, and nonasthma control. All subjects were lifelong nonsmokers. A fractal dimension was calculated on two-dimensional digital images of each cast.

Results: Nonasthma control casts had smooth walls and dichotomous branching patterns with nontapering segments. Asthmatic casts showed many abnormalities, including airway truncation from mucous plugs, longitudinal ridges, and horizontal corrugations corresponding to elastic bundles and smooth muscle hypertrophy, respectively, and surface projections associated with ectatic mucous gland ducts. Fractal dimensions were calculated from digitized images using an information method. The average fractal dimensions of the airways of both the fatal asthma (1.72) and nonfatal asthma (1.76) groups were significantly (p < 0.01 and p = 0.032, respectively) lower than that of the nonasthma control group (1.83). The lower fractal dimension of asthmatic airways correlated with a decreased overall structural complexity and pathologic severity of disease.

Conclusion: Fractal analysis is a simple and useful technique for quantifying the chronic structural changes of airway remodeling in asthma.

Keywords: airway remodeling; asthma pathology; fractal dimension; silicone casts

Remodeling of the airway wall is one of the cardinal features of asthma. It is defined as changes in the composition, content, and organization of cellular and molecular constituents of the airway wall (1). Airway remodeling contributes to airway hyperresponsiveness and may lead to a fixed component of airway narrowing (2). Studies of remodeling have provided useful information on tissues obtained at autopsy (3, 4) and bronchial biopsy (5, 6) and on images obtained by computed tomography (CT) (7, 8). These studies have been limited by sample size constraints (bronchial biopsy) or resolution (CT) and have focused on cross-sectional changes in the airways. The effects of remodeling on the longitudinal and branching structure of the lung have been relatively neglected.

Euclidean geometry has been the primary tool for describing the conducting airways (length, diameter, branching angles) of healthy adult humans (9–12). However, Euclidean methods do not provide a measurement indicating the extent of deviation from an idealized tube. This variability is a design feature of the human lung that balances optimal physical structure with physiologic robustness (13). Thus, Euclidean methods, although sufficient for describing basic dimensions, are often incapable of generating a precise measure of complex structures such as the bronchial tree, which demonstrate scale-independent self similarity with more detail unfolding at higher magnifications (14).

Structures that are irregular and exhibit some form of self similarity are called fractal (14–17). The degree of such self-repetition can be quantified as a fractal dimension (FD), which is closely related to a power law distribution (16, 18). Human respiration also exhibits fractal fluctuations (19), and fractal models have found new applications in pulmonary medicine. They have been used to quantify breath sounds during exhalation (20), to study the heterogeneity of pulmonary blood flow (21, 22), and to quantify low-attenuation areas on high-resolution CT images from patients with chronic obstructive pulmonary disease (23–25). Areas of high and low attenuation will reflect ventilation inhomogeneity due to airway disease. The FD may also be used to describe the space filling ability of a structure; a feature of particular importance to the lung in view of its role in gas exchange (10, 26).

Fractal analysis is a relatively simple technique that is well suited to calculate an index quantifying the extent of change in disease states (17). Because FD is a measure of structural complexity (26), we hypothesized that acute asthma would result in a lower overall FD. We report that whole casts of the bronchial trees of both fatal and nonfatal asthma have decreased FD compared with nonasthma controls. This decrease can, in part, be explained by loss of ventilatory units due to bronchoconstriction and mucous plugs. We also found that at higher magnification, individual segments of diseased airways had a higher FD, due to small-scale abnormalities associated with airway remodeling.

METHODS

Study Population

The study population consisted of three groups each of six cases: fatal asthma, had asthma and died as a result of it; nonfatal asthma, history of asthma but died of other causes as listed in Table 1; and nonasthma control subjects, no history of asthma and died of nonrespiratory causes. All were lifelong nonsmokers; other subject characteristics are listed in Table 1. All had autopsies either through the medical examiner and/or participating hospitals as part of the Prairie Provinces Asthma Study (27). Demographic history, as well as information on asthma, medications, smoking, and occupation, was obtained from a questionnaire administered to the next of kin and from medical, pharmacy, and toxicity records. Further details of group classification are found in References 27 and 28. Consent for autopsy and use of tissues for research was obtained from the families of the deceased. The project...
TABLE 1. SUBJECT CHARACTERISTICS INCLUDING AGE, SEX, ASTHMA DURATION, ASTHMA GRADE, AND CAUSE OF DEATH

<table>
<thead>
<tr>
<th>Group</th>
<th>Age</th>
<th>Sex</th>
<th>Asthma Duration (yr)</th>
<th>Clinical Severity*</th>
<th>Cause of Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA</td>
<td>55</td>
<td>F</td>
<td>10</td>
<td>3</td>
<td>Asthma</td>
</tr>
<tr>
<td>FA</td>
<td>59</td>
<td>M</td>
<td>6</td>
<td>2</td>
<td>Asthma</td>
</tr>
<tr>
<td>FA</td>
<td>18</td>
<td>M</td>
<td>8</td>
<td>3</td>
<td>Asthma</td>
</tr>
<tr>
<td>FA</td>
<td>18</td>
<td>F</td>
<td>16</td>
<td>3</td>
<td>Asthma</td>
</tr>
<tr>
<td>FA</td>
<td>24</td>
<td>M</td>
<td>20</td>
<td>2</td>
<td>Asthma</td>
</tr>
<tr>
<td>FA</td>
<td>20</td>
<td>F</td>
<td>9</td>
<td>2</td>
<td>Asthma</td>
</tr>
<tr>
<td>Mean</td>
<td>32.3</td>
<td>n/a</td>
<td>11.5</td>
<td>2.5</td>
<td>n/a</td>
</tr>
<tr>
<td>Range</td>
<td>18–59</td>
<td>n/a</td>
<td>6–20</td>
<td>2–3</td>
<td>n/a</td>
</tr>
<tr>
<td>NFA</td>
<td>29</td>
<td>F</td>
<td>6</td>
<td>2</td>
<td>Intraventricular hemorrhage</td>
</tr>
<tr>
<td>NFA</td>
<td>33</td>
<td>F</td>
<td>31</td>
<td>1</td>
<td>Drug toxicity, obesity</td>
</tr>
<tr>
<td>NFA</td>
<td>21</td>
<td>M</td>
<td>17</td>
<td>3</td>
<td>Acute ethanol toxicity</td>
</tr>
<tr>
<td>NFA</td>
<td>23</td>
<td>M</td>
<td>21.5</td>
<td>2</td>
<td>Asphyxia in avalanche</td>
</tr>
<tr>
<td>NFA</td>
<td>25</td>
<td>M</td>
<td>5</td>
<td>2</td>
<td>Morbid obesity</td>
</tr>
<tr>
<td>NFA</td>
<td>18</td>
<td>F</td>
<td>2</td>
<td>3</td>
<td>Diabetic ketoacidosis</td>
</tr>
<tr>
<td>Mean</td>
<td>24.8</td>
<td>n/a</td>
<td>13.75</td>
<td>2.2</td>
<td>n/a</td>
</tr>
<tr>
<td>Range</td>
<td>18–33</td>
<td>n/a</td>
<td>2–31</td>
<td>1–3</td>
<td>n/a</td>
</tr>
<tr>
<td>NAC</td>
<td>30</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>Leukemia</td>
</tr>
<tr>
<td>NAC</td>
<td>21</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>Motor vehicle accident</td>
</tr>
<tr>
<td>NAC</td>
<td>16</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>Brainstem tumor</td>
</tr>
<tr>
<td>NAC</td>
<td>33</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>Subarachnoid hemorrhage</td>
</tr>
<tr>
<td>NAC</td>
<td>29</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>Seizure disorder</td>
</tr>
<tr>
<td>NAC</td>
<td>31</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>Self-inflicted gunshot wound</td>
</tr>
<tr>
<td>Mean</td>
<td>30.3</td>
<td>n/a</td>
<td>0</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>Range</td>
<td>18–50</td>
<td>n/a</td>
<td>0</td>
<td>0</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Definition of abbreviations: FA = fatal asthma group; n/a = not applicable; NAC = nonasthma control group; NFA = nonfatal asthma group.

* Based on response to a questionnaire administered to next of kin, which asked: “How would you rate the overall severity of his/her asthma condition?” Scores are: 0 = Absent; 1 = Mild—interferes infrequently with normal lifestyle; 2 = Moderate—occasionally interferes with normal lifestyle; 3 = Severe—seriously interferes with normal lifestyle.

was approved by the Conjoint Ethics Committees of the University of Calgary and the University of Alberta.

Pathology

The lungs were fixed with a dual perfusion technique involving cannulation of the pulmonary arteries and major bronchi with 2.5% gluteraldehyde at 20 cm H2O pressure for 24 hours. At autopsy, a pathologic assessment of asthma severity was made and a score ranging from 0 (absent) to 4 (severe) was assigned on the basis of histologic evaluation of lung sections from upper and lower lobes of the left lung. The overall severity score was based on evaluation of four major histologic attributes of asthma: inflammation, mucous gland hypertrophy, airway smooth muscle hyperplasia, and thickening of the subepithelial connective tissues (lamina reticularis) (29). A stratified technique was used to sample axial airways to the apical segment of the left upper lobe and the anterior and basal segments of the left lower lobe. Sections of airways, ranging from cartilaginous bronchi to terminal bronchioles, were stained with hematoxylin and eosin and PAS/Alcian Blue for mucous substances. Morphometric analyses of airway smooth muscle and mucous glands were done with a grid and values for mucous glands and smooth muscle were normalized to the internal perimeter of the airway (28). The eosinophilic infiltrates were graded into absent (grade 0), mild (grade 1), moderate (grade 2), and severe (grade 3). Intra- and interobserver variability ranged from 2 to 6%. Death from asthma was defined as history of asthma combined with gross and microscopic evidence of asphyxia (hyperinflation and collapse, mucous plugging, petechial hemorrhages of the serosal cavities, and bronchoconstriction). Other potential causes of death were eliminated with the use of the medical history, a toxicology profile, and full autopsies.

Preparation of Casts

Silicone rubber casts were prepared using a negative-pressure injection technique described by Perry and coworkers (30). To demonstrate that the casts were true replicas of the airways and to determine the relationship between cast features and airway anatomy and pathology, microdissections were performed on selected lungs before bleach digestion (30).

Fractal Analyses

Black-and-white images of the silicone casts were obtained at a resolution of 1.280 × 960 pixels, using a digital camera with constant settings of focal length, shutter speed, and aperture size under a constant illumination (AGFA ePhoto 1280; AGFA, Mortsel, Belgium). A “front” and a “back” image were made of each cast and were edge-sharpened by 5%. FD of both images were calculated and averaged for statistical analysis.

FD was calculated using the information method (Benoit 1.1; TruSoft Int’l Inc., St. Petersburg, FL). The black-and-white images were converted to an outline of single pixels, and rotating grids up to 26 squares with side lengths ranging from 1 to 891 pixels were placed over the image. The number of squares containing the outline of the image was counted and weighted (informed) by the proportion of the square including the image. As shown in Figure 1, log-log graphs of the information entropy [I (d)] against the box size length (d) were plotted, yielding a linear relationship with a general equation, log[I (d)] = -FD log(d). Thus, FD was given as the slope. For some images, no additional information was gained by increasing the box size beyond a certain number of pixels. That is, as d increased, [I (d)] remained constant. In addition, both the Benoit software and other researchers have strongly suggested that points falling in the lowest and highest orders of magnitude be excluded from the calculation of FD, to compensate for the finite nature of biological structures (31). These points were removed from the calculation of the FD (Figure 1).

To examine the effects of ectatic mucous gland ducts and other surface abnormalities, 10 representative airways from asthmatic casts and 9 representative airways from nonasthma control casts were selected. These airways were isolated by pulling back the remaining branches from the field of view of the camera when the images were obtained. As before, the images were taken with a constant focal length, lighting, aperture, and shutter speed. Before downloading the images onto a computer, the images were trimmed using a feature in the camera that allows such a procedure without compromising image resolution. These highly magnified images of an airway were converted into outlines using the Image J software (Wayne Rasband, Bethesda, MD), and their FD determined using the information method described above.
A sensitivity analysis was performed to examine the effects of complete airway closure on FD. The closures were simulated by sequentially trimming a nonasthma control cast, not used in the previous analyses, in both the number of branches and their length until it consisted only of the major bronchus and a few major branches. Using a nonasthma control cast minimized possible noise from other structural irregularities present in the diseased cases, and ensured that any changes in FD were due to the truncations. The cast was pinned onto a stage to minimize shifting. At each trimmed stage, the number of cuts made was recorded, and an image of the trimmed cast was obtained at a resolution of \(2,560 \times 1,920\) pixels. The FDs of the images were calculated using the same protocol as indicated above, and plotted against the number of cuts to determine a trend.

Statistical Analyses

For group (fatal asthma, nonfatal asthma, nonasthma control) comparisons of the FD, a one-way ANOVA with a Student-Newman-Keul’s test was performed. Effects of eosinophilic infiltrates on FD were studied using a \(t\) test to compare cases with grades 0 and 1 eosinophilic infiltrates to those with grades 2 and 3 eosinophilic infiltrates. The Pearson correlation test was used to evaluate the linear relationship between asthma duration (years), mucous gland and smooth muscle area, and FD. For all tests, a value of \(p < 0.05\) was considered to be statistically significant. All analyses were performed using SAS software (SAS, Cary, NC).

RESULTS

Gross Appearances of the Casts and Pathology

Photographs of representative casts from each group are shown in Figure 2. The nonasthma control casts were uniform in diameter along each airway generation, without enlarged mucous ducts or longitudinal ridges (Figure 2A). Close-up views of the smaller airways of the nonasthma control casts revealed considerable detail, with filling of individual alveoli arising from respiratory bronchioles (Figure 2B). Casts of the fatal asthma cases were markedly different from the nonasthma control and the nonfatal asthma groups (Figure 2C). A typical fatal asthma cast showed architectural remodeling throughout its length; many segments showed marked tapering, irregular constrictions, longitudinal ridges, and surface protrusions (Figure 2D). Truncation of airways due to mucous plugs was a common feature. The nonfatal asthma casts were also abnormal, but to a lesser degree than the fatal asthma casts (Figure 2E). They showed prominent longitudinal ridges and increased surface protrusions, compared with the nonasthma control casts, but lacked the constrictions and segmental tapering characteristic of the fatal asthma group. Microdissections revealed that the surface protrusions corresponded to ectatic mucous gland ducts. The prominent longitudinal ridges and constricted areas corresponded to hypertrophic longitudinal elastic bundles (29) and smooth muscle bundles (32), respectively, on histologic examinations. The results of the morphometric analyses of the airway pathology are given in Table 2.

Fractal Analyses

The FD of the images of the whole casts was significantly lower in both the nonfatal asthma \((1.76 \pm 0.02; p = 0.032)\) and fatal asthma \((1.72 \pm 0.02; p < 0.01)\) groups compared with the non-
asthma control group (1.83 ± 0.01) (Figure 3). The FD was not significantly different between nonfatal asthma and fatal asthma (p = 0.21).

The FD was significantly higher (p < 0.01) for the outlines of the airways with irregular outlines (1.11 ± 0.01) than the outlines of smooth airways (1.02 ± 0.01).

Figure 4 shows the sequential trimming of the nonasthma control cast used to simulate the effects of airway obstruction. Before trimming, the FD was 1.79, which is slightly lower than the average FD reported for the six nonasthma control casts used in this study. The value of FD decreased approximately monotonically as the bronchial tree was pruned from 0–150 cuts (Figure 4).

There were no statistically significant relationships between FD and age (r = −0.04, p = 0.9), sex (p = 0.7), or duration of asthma (r = −0.29, p = 0.36). There were significant negative relationships between FD and area of mucous glands (r = −0.52, p = 0.03), and airway smooth muscle area (r = −0.51, p = 0.03). There was no significant difference in FD between the individuals with asthma of eosinophil grade 0–1, and 2–3 (p = 0.08).

DISCUSSION

In this study, FDs of silicone rubber casts of airways from individuals with asthma and control subjects were determined using an information method. A sensitivity analysis was used to illustrate the effect of mucus plugs on FD at a low magnification. Visual examination of these casts showed clear differences between the lungs of subjects who died with or of asthma compared with those who died without asthma and of nonrespiratory causes (Figure 2). The most striking feature of the fatal asthmatic casts was the overall loss of airways due to mucous plugs and bronchoconstriction, and this was quantified by a statistically significantly smaller FD than the FD calculated for the nonasthma control casts. In addition, both fatal asthma and nonfatal asthma cases showed severe airway surface abnormalities that corresponded to known features of remodeled airways associated with asthma, including smooth muscle hypertrophy (32), longitudinal elastic bundles (29), and ectatic mucous gland ducts (33). These features, when examined at higher magnifications, were associated with an increased FD.

The overall FD was significantly correlated with morphometric indices of asthma severity, including mucous gland and smooth muscle hyperplasia, although not with the severity of eosinophil infiltrates or asthma duration. Our results were not confounded by cigarette smoking, which also affects airway structure and function, as only nonsmokers were used.

The mean FD (1.84) measured on normal airways in this study was slightly higher than the values for normal human airways (1.75) reported by Kitaoka and Takahashi (34). This difference is most likely a result of the type of image, as images of reconstructed airways were used by Kitaoka and Takahashi, whereas digital images of casts were used in this study.

Our study revealed a change in FD in the presence of disease. The FD of both the nonfatal asthma and fatal asthma groups were significantly lower than the FD of the nonasthma control group, but not different from each other. The sensitivity analysis showed that approximately 117 cuts (equivalent to 44% of the cast), each of which simulated an airway closure, were required to cause a decrease in FD equivalent to the average seen in the fatal asthma subjects of this study. The FD thus appeared to accurately track the loss of ventilatory units.

A decrease in FD indicates a loss of complexity and thus a decrease in space-filling ability of these airways, which is clearly evident in the fatal asthma cases. Decreased complexity has been
Figure 3. Average FD for the three groups (nonasthma control, nonfatal asthma, and fatal asthma). There is a progressive decline in FD from nonasthma control through nonfatal asthma to fatal asthma. The FD of nonfatal asthma and fatal asthma were both significantly different from nonasthma control (p < 0.05). The FD of fatal asthma was not significantly different from the FD of nonfatal asthma. *p < 0.05, fatal asthma or nonfatal asthma vs. nonasthma control.

Figure 4. Sequential trimming was performed on a nonasthma control cast, not used in the study, to mimic airway truncation from bronchoconstriction and mucous plugs. The cast was trimmed in 13 steps and FDs were determined. The FDs were plotted against the cumulative number of cuts (bottom right corner). A significant negative correlation (r = -0.94, p < 0.05), was found for the relationship between FD and cumulative cuts.
used objects are squares, although triangles have also been used (43). How an object is measured may have a substantial impact on the resultant FD. As reported by Fernández and coworkers, use of a simple box-counting method (a box is counted if it touches the structure at all) may result in anomalies not found with a weighted (informed) or sand box–counting method (a box is weighted by the proportion that is filled with the structure) (41). Perhaps, the sensitivity of the FD value with regard to the method of measurement is part of the reason why its use in studying diseases such as emphysema has been limited (44). If used, however, as an index of structure or change in structure, the exact interpretation of the meaning of the FD is less important than its ability to discriminate between states.

An advantage of using the information method, which weights each box according to the proportion filled, for calculating FD is that it is less likely to result in a false detection of multifractal characteristics (41). In fact, the presence of more than one fractal structure in an object or multifractal characteristics is common in normal and diseased biologic samples (45). Higher-magnification images of the airway segments from subjects with asthma revealed an increased surface complexity (primarily ectatic mucous gland ducts) associated with remodeling.

To test if these changes would increase the FD, analyses were done on images of isolated airway segments at higher magnification. It was found that the mean FD for asthmatic airways was indeed significantly higher than those without such abnormalities. As these highly magnified images excluded all other components of the cast such as the branches except for a representative segment, the increase in FD can be attributed to the increase in surface complexity from the airway remodeling.

In diseases such as cancer, morphologic complexity may increase (and FD increases) (46). Landini and Rippin reported an increasing FD from normal through dysplastic to cancerous lesion as seen at the interface between the mucosa and connective tissues in the floor of the mouth (47). Thus, the interpretation of FD is complex, as it appears that as physiologic complexity decreases, pathologic complexity may increase.

One may question why the ectatic mucous gland ducts and other irregularities on the airway surface of the fatal asthma cases, which increased surface complexity of the asthmatic airways, were not reflected in the overall FD. This is because of the resolution of the images of the bronchial casts, and the exclusion of the lowest order of magnitude of the log–log plots used to calculate FD (see Methods and Figure 1). In doing so, the ectatic mucous gland ducts, whose size ranged between 4 and 9 pixels (380 μm to 856 μm), were too small to be detected by the smallest box size at 10 pixels (951 μm). Consequently, the lower overall FD of the asthmatic lungs reflects only the branching tree structure of the airways and not their surface features.

Thus, an airway tree, like other objects in nature, contains more than one fractal structure, and an overall FD does not necessarily provide a complete description of the airways in the diseased lung. Similarly, simple measurements of the length and diameter of an airway do not reflect the roughened surfaces, irregularities, or absent functional units, which are often encountered in biological samples and are especially prominent in the lung casts of fatal asthma and nonfatal asthma cases (Figures 2–4) (48). As suggested by Chau (49), use of multiple analytical techniques at appropriate magnifications for the feature of interest are becoming increasingly pertinent to explore the complexity of biological structures.

In summary, our results show that calculation of a FD using an information method for the asthmatic airway provides a rapid assessment of disease relative to a normal lung. It appears from our data that a single measurement of the bronchial tree reflects the severity of disease as determined by pathologic analysis. An improved understanding of airway remodeling in asthma may be important for modeling particle deposition and for improving drug delivery in the asthmatic airways.

Conflict of Interest Statement: None of the authors have a financial relationship with a commercial entity that has an interest in the subject of this manuscript.

Acknowledgment: The authors thank Dr. Robert Cowie and Dr. Richard Leigh for their helpful suggestions in revising the manuscript, Artee Karkhanis for technical assistance, and Mamie Cudmore for administrative assistance.

References

